Discovery of food identity markers by metabolomics and machine learning technology
- Autores
- Erban, Alexander; Fehrle, Ines; Martinez-Seidel, Federico; Brigante, Federico Iván; Lucini Mas, Agustín; Baroni, María Verónica; Wunderlin, Daniel Alberto; Kopka, Joachim
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Verification of food authenticity establishes consumer trust in food ingredients and components of processed food. Next to genetic or protein markers, chemicals are unique identifiers of food components. Non-targeted metabolomics is ideally suited to screen food markers when coupled to efficient data analysis. This study explored feasibility of random forest (RF) machine learning, specifically its inherent feature extraction for non-targeted metabolic marker discovery. The distinction of chia, linseed, and sesame that have gained attention as “superfoods” served as test case. Chemical fractions of non-processed seeds and of wheat cookies with seed ingredients were profiled. RF technology classified original seeds unambiguously but appeared overdesigned for material with unique secondary metabolites, like sesamol or rosmarinic acid in the Lamiaceae, chia. Most unique metabolites were diluted or lost during cookie production but RF technology classified the presence of the seed ingredients in cookies with 6.7% overall error and revealed food processing markers, like 4-hydroxybenzaldehyde for chia and succinic acid monomethylester for linseed additions. RF based feature extraction was adequate for difficult classifications but marker selection should not be without human supervision. Combination with alternative data analysis technologies is advised and further testing of a wide range of seeds and food processing methods.
Fil: Erban, Alexander. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania
Fil: Fehrle, Ines. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania
Fil: Martinez-Seidel, Federico. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania
Fil: Brigante, Federico Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina
Fil: Lucini Mas, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina
Fil: Baroni, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina
Fil: Wunderlin, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina
Fil: Kopka, Joachim. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania - Materia
-
METABOLOMICS
GCMS
MACHINE LEARNING
SEEDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125719
Ver los metadatos del registro completo
id |
CONICETDig_fab251c24aa06cef42d427a4ea32ce95 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125719 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Discovery of food identity markers by metabolomics and machine learning technologyErban, AlexanderFehrle, InesMartinez-Seidel, FedericoBrigante, Federico IvánLucini Mas, AgustínBaroni, María VerónicaWunderlin, Daniel AlbertoKopka, JoachimMETABOLOMICSGCMSMACHINE LEARNINGSEEDShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Verification of food authenticity establishes consumer trust in food ingredients and components of processed food. Next to genetic or protein markers, chemicals are unique identifiers of food components. Non-targeted metabolomics is ideally suited to screen food markers when coupled to efficient data analysis. This study explored feasibility of random forest (RF) machine learning, specifically its inherent feature extraction for non-targeted metabolic marker discovery. The distinction of chia, linseed, and sesame that have gained attention as “superfoods” served as test case. Chemical fractions of non-processed seeds and of wheat cookies with seed ingredients were profiled. RF technology classified original seeds unambiguously but appeared overdesigned for material with unique secondary metabolites, like sesamol or rosmarinic acid in the Lamiaceae, chia. Most unique metabolites were diluted or lost during cookie production but RF technology classified the presence of the seed ingredients in cookies with 6.7% overall error and revealed food processing markers, like 4-hydroxybenzaldehyde for chia and succinic acid monomethylester for linseed additions. RF based feature extraction was adequate for difficult classifications but marker selection should not be without human supervision. Combination with alternative data analysis technologies is advised and further testing of a wide range of seeds and food processing methods.Fil: Erban, Alexander. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; AlemaniaFil: Fehrle, Ines. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; AlemaniaFil: Martinez-Seidel, Federico. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; AlemaniaFil: Brigante, Federico Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Lucini Mas, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Baroni, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Wunderlin, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Kopka, Joachim. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; AlemaniaNature Publishing Group2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125719Erban, Alexander; Fehrle, Ines; Martinez-Seidel, Federico; Brigante, Federico Iván; Lucini Mas, Agustín; et al.; Discovery of food identity markers by metabolomics and machine learning technology; Nature Publishing Group; Scientific Reports; 9; 9697; 12-20192045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-46113-yinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-019-46113-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:41Zoai:ri.conicet.gov.ar:11336/125719instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:42.212CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Discovery of food identity markers by metabolomics and machine learning technology |
title |
Discovery of food identity markers by metabolomics and machine learning technology |
spellingShingle |
Discovery of food identity markers by metabolomics and machine learning technology Erban, Alexander METABOLOMICS GCMS MACHINE LEARNING SEEDS |
title_short |
Discovery of food identity markers by metabolomics and machine learning technology |
title_full |
Discovery of food identity markers by metabolomics and machine learning technology |
title_fullStr |
Discovery of food identity markers by metabolomics and machine learning technology |
title_full_unstemmed |
Discovery of food identity markers by metabolomics and machine learning technology |
title_sort |
Discovery of food identity markers by metabolomics and machine learning technology |
dc.creator.none.fl_str_mv |
Erban, Alexander Fehrle, Ines Martinez-Seidel, Federico Brigante, Federico Iván Lucini Mas, Agustín Baroni, María Verónica Wunderlin, Daniel Alberto Kopka, Joachim |
author |
Erban, Alexander |
author_facet |
Erban, Alexander Fehrle, Ines Martinez-Seidel, Federico Brigante, Federico Iván Lucini Mas, Agustín Baroni, María Verónica Wunderlin, Daniel Alberto Kopka, Joachim |
author_role |
author |
author2 |
Fehrle, Ines Martinez-Seidel, Federico Brigante, Federico Iván Lucini Mas, Agustín Baroni, María Verónica Wunderlin, Daniel Alberto Kopka, Joachim |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
METABOLOMICS GCMS MACHINE LEARNING SEEDS |
topic |
METABOLOMICS GCMS MACHINE LEARNING SEEDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Verification of food authenticity establishes consumer trust in food ingredients and components of processed food. Next to genetic or protein markers, chemicals are unique identifiers of food components. Non-targeted metabolomics is ideally suited to screen food markers when coupled to efficient data analysis. This study explored feasibility of random forest (RF) machine learning, specifically its inherent feature extraction for non-targeted metabolic marker discovery. The distinction of chia, linseed, and sesame that have gained attention as “superfoods” served as test case. Chemical fractions of non-processed seeds and of wheat cookies with seed ingredients were profiled. RF technology classified original seeds unambiguously but appeared overdesigned for material with unique secondary metabolites, like sesamol or rosmarinic acid in the Lamiaceae, chia. Most unique metabolites were diluted or lost during cookie production but RF technology classified the presence of the seed ingredients in cookies with 6.7% overall error and revealed food processing markers, like 4-hydroxybenzaldehyde for chia and succinic acid monomethylester for linseed additions. RF based feature extraction was adequate for difficult classifications but marker selection should not be without human supervision. Combination with alternative data analysis technologies is advised and further testing of a wide range of seeds and food processing methods. Fil: Erban, Alexander. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania Fil: Fehrle, Ines. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania Fil: Martinez-Seidel, Federico. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania Fil: Brigante, Federico Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina Fil: Lucini Mas, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina Fil: Baroni, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina Fil: Wunderlin, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina Fil: Kopka, Joachim. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania |
description |
Verification of food authenticity establishes consumer trust in food ingredients and components of processed food. Next to genetic or protein markers, chemicals are unique identifiers of food components. Non-targeted metabolomics is ideally suited to screen food markers when coupled to efficient data analysis. This study explored feasibility of random forest (RF) machine learning, specifically its inherent feature extraction for non-targeted metabolic marker discovery. The distinction of chia, linseed, and sesame that have gained attention as “superfoods” served as test case. Chemical fractions of non-processed seeds and of wheat cookies with seed ingredients were profiled. RF technology classified original seeds unambiguously but appeared overdesigned for material with unique secondary metabolites, like sesamol or rosmarinic acid in the Lamiaceae, chia. Most unique metabolites were diluted or lost during cookie production but RF technology classified the presence of the seed ingredients in cookies with 6.7% overall error and revealed food processing markers, like 4-hydroxybenzaldehyde for chia and succinic acid monomethylester for linseed additions. RF based feature extraction was adequate for difficult classifications but marker selection should not be without human supervision. Combination with alternative data analysis technologies is advised and further testing of a wide range of seeds and food processing methods. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125719 Erban, Alexander; Fehrle, Ines; Martinez-Seidel, Federico; Brigante, Federico Iván; Lucini Mas, Agustín; et al.; Discovery of food identity markers by metabolomics and machine learning technology; Nature Publishing Group; Scientific Reports; 9; 9697; 12-2019 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125719 |
identifier_str_mv |
Erban, Alexander; Fehrle, Ines; Martinez-Seidel, Federico; Brigante, Federico Iván; Lucini Mas, Agustín; et al.; Discovery of food identity markers by metabolomics and machine learning technology; Nature Publishing Group; Scientific Reports; 9; 9697; 12-2019 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-46113-y info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-019-46113-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613978201784320 |
score |
13.070432 |