Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach
- Autores
- Musso, Mariel Fernanda; Daly, Alana; Combita, Lina; Moyano, Sebastián; Rico Pico, Josué; Conejero, Ángela; Ballesteros Duperon, María Ángeles; Cascallar, Eduardo; Rosario Rueda, María Rosario
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This study presents four attentional profiles in early development using a novel attention task. This study also aims to develop machine learning models to classify children into these profiles from a broad range of data acquired in infancy. A total of 76 toddlers participated as part of a longitudinal project.
Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina
Fil: Daly, Alana. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Combita, Lina. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Moyano, Sebastián. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Rico Pico, Josué. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Conejero, Ángela. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Ballesteros Duperon, María Ángeles. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Cascallar, Eduardo. Katholikie Universiteit Leuven; Bélgica
Fil: Rosario Rueda, María Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
International Congress for Psychological Sciences
Bruselas
Bélgica
Association for Psychological Sciences - Materia
-
Prediction
Attentional profiles
Development
Machine learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263122
Ver los metadatos del registro completo
id |
CONICETDig_7fe456929d4bdcea1884d1ddb485fca7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263122 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approachMusso, Mariel FernandaDaly, AlanaCombita, LinaMoyano, SebastiánRico Pico, JosuéConejero, ÁngelaBallesteros Duperon, María ÁngelesCascallar, EduardoRosario Rueda, María RosarioPredictionAttentional profilesDevelopmentMachine learninghttps://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5This study presents four attentional profiles in early development using a novel attention task. This study also aims to develop machine learning models to classify children into these profiles from a broad range of data acquired in infancy. A total of 76 toddlers participated as part of a longitudinal project.Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; ArgentinaFil: Daly, Alana. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Combita, Lina. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Moyano, Sebastián. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Rico Pico, Josué. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Conejero, Ángela. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Ballesteros Duperon, María Ángeles. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Cascallar, Eduardo. Katholikie Universiteit Leuven; BélgicaFil: Rosario Rueda, María Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaInternational Congress for Psychological SciencesBruselasBélgicaAssociation for Psychological SciencesAssociation for Psychological Science2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263122Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach; International Congress for Psychological Sciences; Bruselas; Bélgica; 2023; 30-30CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.psychologicalscience.org/conventions/icps-2023/full-convention-programinfo:eu-repo/semantics/altIdentifier/url/https://www.psychologicalscience.org/redesign/wp-content/uploads/2023/03/Poster_Brochure_ICPS_2023.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:58Zoai:ri.conicet.gov.ar:11336/263122instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:58.463CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach |
title |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach |
spellingShingle |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach Musso, Mariel Fernanda Prediction Attentional profiles Development Machine learning |
title_short |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach |
title_full |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach |
title_fullStr |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach |
title_full_unstemmed |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach |
title_sort |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach |
dc.creator.none.fl_str_mv |
Musso, Mariel Fernanda Daly, Alana Combita, Lina Moyano, Sebastián Rico Pico, Josué Conejero, Ángela Ballesteros Duperon, María Ángeles Cascallar, Eduardo Rosario Rueda, María Rosario |
author |
Musso, Mariel Fernanda |
author_facet |
Musso, Mariel Fernanda Daly, Alana Combita, Lina Moyano, Sebastián Rico Pico, Josué Conejero, Ángela Ballesteros Duperon, María Ángeles Cascallar, Eduardo Rosario Rueda, María Rosario |
author_role |
author |
author2 |
Daly, Alana Combita, Lina Moyano, Sebastián Rico Pico, Josué Conejero, Ángela Ballesteros Duperon, María Ángeles Cascallar, Eduardo Rosario Rueda, María Rosario |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Prediction Attentional profiles Development Machine learning |
topic |
Prediction Attentional profiles Development Machine learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This study presents four attentional profiles in early development using a novel attention task. This study also aims to develop machine learning models to classify children into these profiles from a broad range of data acquired in infancy. A total of 76 toddlers participated as part of a longitudinal project. Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina Fil: Daly, Alana. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Combita, Lina. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Moyano, Sebastián. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Rico Pico, Josué. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Conejero, Ángela. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Ballesteros Duperon, María Ángeles. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Cascallar, Eduardo. Katholikie Universiteit Leuven; Bélgica Fil: Rosario Rueda, María Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España International Congress for Psychological Sciences Bruselas Bélgica Association for Psychological Sciences |
description |
This study presents four attentional profiles in early development using a novel attention task. This study also aims to develop machine learning models to classify children into these profiles from a broad range of data acquired in infancy. A total of 76 toddlers participated as part of a longitudinal project. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263122 Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach; International Congress for Psychological Sciences; Bruselas; Bélgica; 2023; 30-30 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263122 |
identifier_str_mv |
Predictive classification of attentional profiles at age 3-years from early development using a machine learning approach; International Congress for Psychological Sciences; Bruselas; Bélgica; 2023; 30-30 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.psychologicalscience.org/conventions/icps-2023/full-convention-program info:eu-repo/semantics/altIdentifier/url/https://www.psychologicalscience.org/redesign/wp-content/uploads/2023/03/Poster_Brochure_ICPS_2023.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Association for Psychological Science |
publisher.none.fl_str_mv |
Association for Psychological Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980742953435136 |
score |
12.993085 |