Bogomolny equations for vortices in the noncommutative torus

Autores
Forgács, Peter; Lozano, Gustavo S.; Moreno, Enrique Francisco; Schaposnik, Fidel Arturo
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Non-Commutative Geometry
Solitons Monopoles and Instantons
Geometría
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83570

id SEDICI_3fe6a5de9823bb46884c8bed4a060dc1
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83570
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Bogomolny equations for vortices in the noncommutative torusForgács, PeterLozano, Gustavo S.Moreno, Enrique FranciscoSchaposnik, Fidel ArturoCiencias ExactasNon-Commutative GeometrySolitons Monopoles and InstantonsGeometríaWe derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model.Facultad de Ciencias Exactas2005-07-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2021-2039http://sedici.unlp.edu.ar/handle/10915/83570enginfo:eu-repo/semantics/altIdentifier/issn/1029-8479info:eu-repo/semantics/altIdentifier/doi/10.1088/1126-6708/2005/07/074info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:05Zoai:sedici.unlp.edu.ar:10915/83570Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:05.811SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Bogomolny equations for vortices in the noncommutative torus
title Bogomolny equations for vortices in the noncommutative torus
spellingShingle Bogomolny equations for vortices in the noncommutative torus
Forgács, Peter
Ciencias Exactas
Non-Commutative Geometry
Solitons Monopoles and Instantons
Geometría
title_short Bogomolny equations for vortices in the noncommutative torus
title_full Bogomolny equations for vortices in the noncommutative torus
title_fullStr Bogomolny equations for vortices in the noncommutative torus
title_full_unstemmed Bogomolny equations for vortices in the noncommutative torus
title_sort Bogomolny equations for vortices in the noncommutative torus
dc.creator.none.fl_str_mv Forgács, Peter
Lozano, Gustavo S.
Moreno, Enrique Francisco
Schaposnik, Fidel Arturo
author Forgács, Peter
author_facet Forgács, Peter
Lozano, Gustavo S.
Moreno, Enrique Francisco
Schaposnik, Fidel Arturo
author_role author
author2 Lozano, Gustavo S.
Moreno, Enrique Francisco
Schaposnik, Fidel Arturo
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Non-Commutative Geometry
Solitons Monopoles and Instantons
Geometría
topic Ciencias Exactas
Non-Commutative Geometry
Solitons Monopoles and Instantons
Geometría
dc.description.none.fl_txt_mv We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model.
Facultad de Ciencias Exactas
description We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model.
publishDate 2005
dc.date.none.fl_str_mv 2005-07-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83570
url http://sedici.unlp.edu.ar/handle/10915/83570
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1029-8479
info:eu-repo/semantics/altIdentifier/doi/10.1088/1126-6708/2005/07/074
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
2021-2039
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260354908815360
score 13.13397