Vortex solutions in the noncommutative torus
- Autores
- Lozano, G.S.; Marqués, D.; Schaposnik, F.A.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006.
Fil:Marqués, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. High Energy Phys. 2006;2006(9)
- Materia
-
Non-Commutative Geometry
Solitons Monopoles and Instantons - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10298479_v2006_n9_p_Lozano
Ver los metadatos del registro completo
| id |
BDUBAFCEN_5f47eaffae7cb3c409025e2b9e0e6215 |
|---|---|
| oai_identifier_str |
paperaa:paper_10298479_v2006_n9_p_Lozano |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Vortex solutions in the noncommutative torusLozano, G.S.Marqués, D.Schaposnik, F.A.Non-Commutative GeometrySolitons Monopoles and InstantonsVortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006.Fil:Marqués, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_LozanoJ. High Energy Phys. 2006;2006(9)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:50Zpaperaa:paper_10298479_v2006_n9_p_LozanoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:52.845Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Vortex solutions in the noncommutative torus |
| title |
Vortex solutions in the noncommutative torus |
| spellingShingle |
Vortex solutions in the noncommutative torus Lozano, G.S. Non-Commutative Geometry Solitons Monopoles and Instantons |
| title_short |
Vortex solutions in the noncommutative torus |
| title_full |
Vortex solutions in the noncommutative torus |
| title_fullStr |
Vortex solutions in the noncommutative torus |
| title_full_unstemmed |
Vortex solutions in the noncommutative torus |
| title_sort |
Vortex solutions in the noncommutative torus |
| dc.creator.none.fl_str_mv |
Lozano, G.S. Marqués, D. Schaposnik, F.A. |
| author |
Lozano, G.S. |
| author_facet |
Lozano, G.S. Marqués, D. Schaposnik, F.A. |
| author_role |
author |
| author2 |
Marqués, D. Schaposnik, F.A. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Non-Commutative Geometry Solitons Monopoles and Instantons |
| topic |
Non-Commutative Geometry Solitons Monopoles and Instantons |
| dc.description.none.fl_txt_mv |
Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006. Fil:Marqués, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano |
| url |
http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. High Energy Phys. 2006;2006(9) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046095887761408 |
| score |
13.087074 |