Bogomolny equations for vortices in the noncommutative torus

Autores
Forgács, P.; Lozano, G.S.; Moreno, E.F.; Schaposnik, F.A.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005.
Fuente
J. High Energy Phys. 2005(7):2021-2039
Materia
Non-Commutative Geometry
Solitons Monopoles and Instantons
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10298479_v_n7_p2021_Forgacs

id BDUBAFCEN_a217f3f7fb82c2b8d4b9daa07d65e0c3
oai_identifier_str paperaa:paper_10298479_v_n7_p2021_Forgacs
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Bogomolny equations for vortices in the noncommutative torusForgács, P.Lozano, G.S.Moreno, E.F.Schaposnik, F.A.Non-Commutative GeometrySolitons Monopoles and InstantonsWe derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_ForgacsJ. High Energy Phys. 2005(7):2021-2039reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:37Zpaperaa:paper_10298479_v_n7_p2021_ForgacsInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.164Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Bogomolny equations for vortices in the noncommutative torus
title Bogomolny equations for vortices in the noncommutative torus
spellingShingle Bogomolny equations for vortices in the noncommutative torus
Forgács, P.
Non-Commutative Geometry
Solitons Monopoles and Instantons
title_short Bogomolny equations for vortices in the noncommutative torus
title_full Bogomolny equations for vortices in the noncommutative torus
title_fullStr Bogomolny equations for vortices in the noncommutative torus
title_full_unstemmed Bogomolny equations for vortices in the noncommutative torus
title_sort Bogomolny equations for vortices in the noncommutative torus
dc.creator.none.fl_str_mv Forgács, P.
Lozano, G.S.
Moreno, E.F.
Schaposnik, F.A.
author Forgács, P.
author_facet Forgács, P.
Lozano, G.S.
Moreno, E.F.
Schaposnik, F.A.
author_role author
author2 Lozano, G.S.
Moreno, E.F.
Schaposnik, F.A.
author2_role author
author
author
dc.subject.none.fl_str_mv Non-Commutative Geometry
Solitons Monopoles and Instantons
topic Non-Commutative Geometry
Solitons Monopoles and Instantons
dc.description.none.fl_txt_mv We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005.
description We derive Bogomolny-type equations for the abelian Higgs model defined on the noncommutative torus and discuss its vortex like solutions. To this end, we carefully analyze how periodic boundary conditions have to be handled in noncommutative space and discuss how vortex solutions are constructed. We also consider the extension to an U(2) × U(1) model, a simplified prototype of the noncommutative standard model. © SISSA 2005.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs
url http://hdl.handle.net/20.500.12110/paper_10298479_v_n7_p2021_Forgacs
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. High Energy Phys. 2005(7):2021-2039
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340705180057600
score 12.623145