Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
- Autores
- Stanchi, Oscar Agustín; Ronchetti, Franco; Dal Bianco, Pedro Alejandro; Ríos, Gastón Gustavo; Hasperué, Waldo; Puig Valls, Domenec; Rashwan, Hatem; Quiroga, Facundo Manuel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Ablation
Black Box
Computer Vision
Deep Learning
Interpretability
Quantitative Measure
White Box - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/176288
Ver los metadatos del registro completo
id |
SEDICI_3f7db2ddb0393da671b5fcbafdbcf6a4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/176288 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image ClassificationStanchi, Oscar AgustínRonchetti, FrancoDal Bianco, Pedro AlejandroRíos, Gastón GustavoHasperué, WaldoPuig Valls, DomenecRashwan, HatemQuiroga, Facundo ManuelCiencias InformáticasAblationBlack BoxComputer VisionDeep LearningInterpretabilityQuantitative MeasureWhite BoxThe field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner.Red de Universidades con Carreras en Informática2024-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf125-134http://sedici.unlp.edu.ar/handle/10915/176288enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5info:eu-repo/semantics/reference/hdl/10915/172755info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:50:15Zoai:sedici.unlp.edu.ar:10915/176288Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:50:16.008SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
title |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
spellingShingle |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification Stanchi, Oscar Agustín Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box |
title_short |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
title_full |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
title_fullStr |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
title_full_unstemmed |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
title_sort |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
dc.creator.none.fl_str_mv |
Stanchi, Oscar Agustín Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel |
author |
Stanchi, Oscar Agustín |
author_facet |
Stanchi, Oscar Agustín Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel |
author_role |
author |
author2 |
Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box |
topic |
Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box |
dc.description.none.fl_txt_mv |
The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner. Red de Universidades con Carreras en Informática |
description |
The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/176288 |
url |
http://sedici.unlp.edu.ar/handle/10915/176288 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5 info:eu-repo/semantics/reference/hdl/10915/172755 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 125-134 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904747521081344 |
score |
12.993085 |