Box-ball system: soliton and tree decomposition of excursions

Autores
Ferrari, Pablo Augusto; Gabrielli, Davide
Año de publicación
2020
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1∕2 is in correspondence with a simple random walk with negative drift 2λ − 1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Gabrielli, Davide. Universita degli Studi dell'Aquila; Italia
XIII Symposium on Probability and Stochastic Processes
México
Universidad Nacional Autónoma de México
Materia
BOX-BALL SYSTEM
SOLITONS
EXCURSIONS
PLANAR TREES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/222481

id CONICETDig_7f54fee1ac509b44c8c09cd869524603
oai_identifier_str oai:ri.conicet.gov.ar:11336/222481
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Box-ball system: soliton and tree decomposition of excursionsFerrari, Pablo AugustoGabrielli, DavideBOX-BALL SYSTEMSOLITONSEXCURSIONSPLANAR TREEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1∕2 is in correspondence with a simple random walk with negative drift 2λ − 1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Gabrielli, Davide. Universita degli Studi dell'Aquila; ItaliaXIII Symposium on Probability and Stochastic ProcessesMéxicoUniversidad Nacional Autónoma de MéxicoSpringer2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSimposioBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222481Box-ball system: soliton and tree decomposition of excursions; XIII Symposium on Probability and Stochastic Processes; México; 2017; 107-152978-3-030-57512-0CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-57513-7_5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-57513-7_5info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1906.06405Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:01Zoai:ri.conicet.gov.ar:11336/222481instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:02.115CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Box-ball system: soliton and tree decomposition of excursions
title Box-ball system: soliton and tree decomposition of excursions
spellingShingle Box-ball system: soliton and tree decomposition of excursions
Ferrari, Pablo Augusto
BOX-BALL SYSTEM
SOLITONS
EXCURSIONS
PLANAR TREES
title_short Box-ball system: soliton and tree decomposition of excursions
title_full Box-ball system: soliton and tree decomposition of excursions
title_fullStr Box-ball system: soliton and tree decomposition of excursions
title_full_unstemmed Box-ball system: soliton and tree decomposition of excursions
title_sort Box-ball system: soliton and tree decomposition of excursions
dc.creator.none.fl_str_mv Ferrari, Pablo Augusto
Gabrielli, Davide
author Ferrari, Pablo Augusto
author_facet Ferrari, Pablo Augusto
Gabrielli, Davide
author_role author
author2 Gabrielli, Davide
author2_role author
dc.subject.none.fl_str_mv BOX-BALL SYSTEM
SOLITONS
EXCURSIONS
PLANAR TREES
topic BOX-BALL SYSTEM
SOLITONS
EXCURSIONS
PLANAR TREES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1∕2 is in correspondence with a simple random walk with negative drift 2λ − 1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Gabrielli, Davide. Universita degli Studi dell'Aquila; Italia
XIII Symposium on Probability and Stochastic Processes
México
Universidad Nacional Autónoma de México
description We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1∕2 is in correspondence with a simple random walk with negative drift 2λ − 1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Simposio
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/222481
Box-ball system: soliton and tree decomposition of excursions; XIII Symposium on Probability and Stochastic Processes; México; 2017; 107-152
978-3-030-57512-0
CONICET Digital
CONICET
url http://hdl.handle.net/11336/222481
identifier_str_mv Box-ball system: soliton and tree decomposition of excursions; XIII Symposium on Probability and Stochastic Processes; México; 2017; 107-152
978-3-030-57512-0
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-57513-7_5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-57513-7_5
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1906.06405
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614224008970240
score 13.070432