LOCC convertibility of entangled states in infinite-dimensional systems
- Autores
- Massri, César; Bellomo, Guido; Freytes, Hector; Giuntini, Roberto; Sergioli, Giuseppe; Bosyk, Gustavo Martín
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We advance on the conversion of bipartite quantum states via local operations and classical communication (LOCC) for infinite-dimensional systems. We introduce δ-LOCC convertibility based on the observation that any pure state can be approximated by a state with finite-support Schmidt coefficients. We show that δ-LOCC convertibility of bipartite states is fully characterized by a majorization relation between the sequences of squared Schmidt coefficients, providing a novel extension of Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent to the one of ϵ-LOCC convertibility (Owari et al 2008 Quantum Inf. Comput. 8 0030), but deals with states having finitely supported sequences of Schmidt coefficients. Additionally, we discuss the notions of optimal common resource and optimal common product in this scenario. The optimal common product always exists, whereas the optimal common resource depends on the existence of a common resource. This highlights a distinction between the resource-theoretic aspects of finite versus infinite-dimensional systems. Our results rely on the order-theoretic properties of majorization for infinite sequences, applicable beyond the LOCC convertibility problem.
Instituto de Física La Plata - Materia
-
Física
entanglement
LOCC convertibility
majorization lattice
common resources
infinite dimension - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/167383
Ver los metadatos del registro completo
| id |
SEDICI_3f12ed5dc8e55c54057bdcd2100ee918 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/167383 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
LOCC convertibility of entangled states in infinite-dimensional systemsMassri, CésarBellomo, GuidoFreytes, HectorGiuntini, RobertoSergioli, GiuseppeBosyk, Gustavo MartínFísicaentanglementLOCC convertibilitymajorization latticecommon resourcesinfinite dimensionWe advance on the conversion of bipartite quantum states via local operations and classical communication (LOCC) for infinite-dimensional systems. We introduce δ-LOCC convertibility based on the observation that any pure state can be approximated by a state with finite-support Schmidt coefficients. We show that δ-LOCC convertibility of bipartite states is fully characterized by a majorization relation between the sequences of squared Schmidt coefficients, providing a novel extension of Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent to the one of ϵ-LOCC convertibility (Owari et al 2008 Quantum Inf. Comput. 8 0030), but deals with states having finitely supported sequences of Schmidt coefficients. Additionally, we discuss the notions of optimal common resource and optimal common product in this scenario. The optimal common product always exists, whereas the optimal common resource depends on the existence of a common resource. This highlights a distinction between the resource-theoretic aspects of finite versus infinite-dimensional systems. Our results rely on the order-theoretic properties of majorization for infinite sequences, applicable beyond the LOCC convertibility problem.Instituto de Física La Plata2024info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/167383enginfo:eu-repo/semantics/altIdentifier/issn/1367-2630info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ad503dinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:25:28Zoai:sedici.unlp.edu.ar:10915/167383Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:25:28.815SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
LOCC convertibility of entangled states in infinite-dimensional systems |
| title |
LOCC convertibility of entangled states in infinite-dimensional systems |
| spellingShingle |
LOCC convertibility of entangled states in infinite-dimensional systems Massri, César Física entanglement LOCC convertibility majorization lattice common resources infinite dimension |
| title_short |
LOCC convertibility of entangled states in infinite-dimensional systems |
| title_full |
LOCC convertibility of entangled states in infinite-dimensional systems |
| title_fullStr |
LOCC convertibility of entangled states in infinite-dimensional systems |
| title_full_unstemmed |
LOCC convertibility of entangled states in infinite-dimensional systems |
| title_sort |
LOCC convertibility of entangled states in infinite-dimensional systems |
| dc.creator.none.fl_str_mv |
Massri, César Bellomo, Guido Freytes, Hector Giuntini, Roberto Sergioli, Giuseppe Bosyk, Gustavo Martín |
| author |
Massri, César |
| author_facet |
Massri, César Bellomo, Guido Freytes, Hector Giuntini, Roberto Sergioli, Giuseppe Bosyk, Gustavo Martín |
| author_role |
author |
| author2 |
Bellomo, Guido Freytes, Hector Giuntini, Roberto Sergioli, Giuseppe Bosyk, Gustavo Martín |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Física entanglement LOCC convertibility majorization lattice common resources infinite dimension |
| topic |
Física entanglement LOCC convertibility majorization lattice common resources infinite dimension |
| dc.description.none.fl_txt_mv |
We advance on the conversion of bipartite quantum states via local operations and classical communication (LOCC) for infinite-dimensional systems. We introduce δ-LOCC convertibility based on the observation that any pure state can be approximated by a state with finite-support Schmidt coefficients. We show that δ-LOCC convertibility of bipartite states is fully characterized by a majorization relation between the sequences of squared Schmidt coefficients, providing a novel extension of Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent to the one of ϵ-LOCC convertibility (Owari et al 2008 Quantum Inf. Comput. 8 0030), but deals with states having finitely supported sequences of Schmidt coefficients. Additionally, we discuss the notions of optimal common resource and optimal common product in this scenario. The optimal common product always exists, whereas the optimal common resource depends on the existence of a common resource. This highlights a distinction between the resource-theoretic aspects of finite versus infinite-dimensional systems. Our results rely on the order-theoretic properties of majorization for infinite sequences, applicable beyond the LOCC convertibility problem. Instituto de Física La Plata |
| description |
We advance on the conversion of bipartite quantum states via local operations and classical communication (LOCC) for infinite-dimensional systems. We introduce δ-LOCC convertibility based on the observation that any pure state can be approximated by a state with finite-support Schmidt coefficients. We show that δ-LOCC convertibility of bipartite states is fully characterized by a majorization relation between the sequences of squared Schmidt coefficients, providing a novel extension of Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent to the one of ϵ-LOCC convertibility (Owari et al 2008 Quantum Inf. Comput. 8 0030), but deals with states having finitely supported sequences of Schmidt coefficients. Additionally, we discuss the notions of optimal common resource and optimal common product in this scenario. The optimal common product always exists, whereas the optimal common resource depends on the existence of a common resource. This highlights a distinction between the resource-theoretic aspects of finite versus infinite-dimensional systems. Our results rely on the order-theoretic properties of majorization for infinite sequences, applicable beyond the LOCC convertibility problem. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/167383 |
| url |
http://sedici.unlp.edu.ar/handle/10915/167383 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1367-2630 info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ad503d |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783716320346112 |
| score |
12.982451 |