Optimal common resource in majorization-based resource theories
- Autores
- Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence.
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Freytes, H.. Università Degli Studi Di Cagliari.; Italia
Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia - Materia
-
MAJORIZATION LATTICE
OPTIMAL COMMON RESOURCE
QUANTUM RESOURCE THEORIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129732
Ver los metadatos del registro completo
id |
CONICETDig_2d5bca93a71db37b164b649106639809 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129732 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal common resource in majorization-based resource theoriesBosyk, Gustavo MartinBellomo, GuidoHolik, Federico HernánFreytes, H.Sergioli, GiuseppeMAJORIZATION LATTICEOPTIMAL COMMON RESOURCEQUANTUM RESOURCE THEORIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence.Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Freytes, H.. Università Degli Studi Di Cagliari.; ItaliaFil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; ItaliaIOP Publishing2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129732Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe; Optimal common resource in majorization-based resource theories; IOP Publishing; New Journal of Physics; 21; 8; 8-2019; 083028-0830431367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/ab3734info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ab3734info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:56:18Zoai:ri.conicet.gov.ar:11336/129732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:56:18.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal common resource in majorization-based resource theories |
title |
Optimal common resource in majorization-based resource theories |
spellingShingle |
Optimal common resource in majorization-based resource theories Bosyk, Gustavo Martin MAJORIZATION LATTICE OPTIMAL COMMON RESOURCE QUANTUM RESOURCE THEORIES |
title_short |
Optimal common resource in majorization-based resource theories |
title_full |
Optimal common resource in majorization-based resource theories |
title_fullStr |
Optimal common resource in majorization-based resource theories |
title_full_unstemmed |
Optimal common resource in majorization-based resource theories |
title_sort |
Optimal common resource in majorization-based resource theories |
dc.creator.none.fl_str_mv |
Bosyk, Gustavo Martin Bellomo, Guido Holik, Federico Hernán Freytes, H. Sergioli, Giuseppe |
author |
Bosyk, Gustavo Martin |
author_facet |
Bosyk, Gustavo Martin Bellomo, Guido Holik, Federico Hernán Freytes, H. Sergioli, Giuseppe |
author_role |
author |
author2 |
Bellomo, Guido Holik, Federico Hernán Freytes, H. Sergioli, Giuseppe |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
MAJORIZATION LATTICE OPTIMAL COMMON RESOURCE QUANTUM RESOURCE THEORIES |
topic |
MAJORIZATION LATTICE OPTIMAL COMMON RESOURCE QUANTUM RESOURCE THEORIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence. Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Freytes, H.. Università Degli Studi Di Cagliari.; Italia Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia |
description |
We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129732 Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe; Optimal common resource in majorization-based resource theories; IOP Publishing; New Journal of Physics; 21; 8; 8-2019; 083028-083043 1367-2630 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129732 |
identifier_str_mv |
Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe; Optimal common resource in majorization-based resource theories; IOP Publishing; New Journal of Physics; 21; 8; 8-2019; 083028-083043 1367-2630 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/ab3734 info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ab3734 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606905516195840 |
score |
13.001348 |