Optimal common resource in majorization-based resource theories

Autores
Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence.
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Freytes, H.. Università Degli Studi Di Cagliari.; Italia
Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia
Materia
MAJORIZATION LATTICE
OPTIMAL COMMON RESOURCE
QUANTUM RESOURCE THEORIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/129732

id CONICETDig_2d5bca93a71db37b164b649106639809
oai_identifier_str oai:ri.conicet.gov.ar:11336/129732
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal common resource in majorization-based resource theoriesBosyk, Gustavo MartinBellomo, GuidoHolik, Federico HernánFreytes, H.Sergioli, GiuseppeMAJORIZATION LATTICEOPTIMAL COMMON RESOURCEQUANTUM RESOURCE THEORIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence.Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Freytes, H.. Università Degli Studi Di Cagliari.; ItaliaFil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; ItaliaIOP Publishing2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129732Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe; Optimal common resource in majorization-based resource theories; IOP Publishing; New Journal of Physics; 21; 8; 8-2019; 083028-0830431367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/ab3734info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ab3734info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:56:18Zoai:ri.conicet.gov.ar:11336/129732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:56:18.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal common resource in majorization-based resource theories
title Optimal common resource in majorization-based resource theories
spellingShingle Optimal common resource in majorization-based resource theories
Bosyk, Gustavo Martin
MAJORIZATION LATTICE
OPTIMAL COMMON RESOURCE
QUANTUM RESOURCE THEORIES
title_short Optimal common resource in majorization-based resource theories
title_full Optimal common resource in majorization-based resource theories
title_fullStr Optimal common resource in majorization-based resource theories
title_full_unstemmed Optimal common resource in majorization-based resource theories
title_sort Optimal common resource in majorization-based resource theories
dc.creator.none.fl_str_mv Bosyk, Gustavo Martin
Bellomo, Guido
Holik, Federico Hernán
Freytes, H.
Sergioli, Giuseppe
author Bosyk, Gustavo Martin
author_facet Bosyk, Gustavo Martin
Bellomo, Guido
Holik, Federico Hernán
Freytes, H.
Sergioli, Giuseppe
author_role author
author2 Bellomo, Guido
Holik, Federico Hernán
Freytes, H.
Sergioli, Giuseppe
author2_role author
author
author
author
dc.subject.none.fl_str_mv MAJORIZATION LATTICE
OPTIMAL COMMON RESOURCE
QUANTUM RESOURCE THEORIES
topic MAJORIZATION LATTICE
OPTIMAL COMMON RESOURCE
QUANTUM RESOURCE THEORIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence.
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Freytes, H.. Università Degli Studi Di Cagliari.; Italia
Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia
description We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence.
publishDate 2019
dc.date.none.fl_str_mv 2019-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/129732
Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe; Optimal common resource in majorization-based resource theories; IOP Publishing; New Journal of Physics; 21; 8; 8-2019; 083028-083043
1367-2630
CONICET Digital
CONICET
url http://hdl.handle.net/11336/129732
identifier_str_mv Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe; Optimal common resource in majorization-based resource theories; IOP Publishing; New Journal of Physics; 21; 8; 8-2019; 083028-083043
1367-2630
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/ab3734
info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/ab3734
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606905516195840
score 13.001348