Extending Schmidt vector from pure to mixed states for characterizing entanglement

Autores
Meroi, F.; Losada, M.; Bosyk, Gustavo Martin
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, we enhance the understanding of entanglement transformations and their quantification by extending the concept of Schmidt vector from pure to mixed bipartite states, exploiting the lattice structure of majorization. The Schmidt vector of a bipartite mixed state is defined using two distinct methods: as a concave roof extension of Schmidt vectors of pure states, or equivalently, from the set of pure states that can be transformed into the mixed state through local operations and classical communication (LOCC). We demonstrate that the Schmidt vector fully characterized separable and maximally entangled states. Furthermore, we prove that the Schmidt vector is monotonic and strongly monotonic under LOCC, giving necessary conditions for conversions between mixed states. Additionally, we extend the definition of the Schmidt rank from pure states to mixed states as the cardinality of the support of the Schmidt vector and show that it is equal to the Schmidt number introduced in previous work [Terhal and Horodecki, Phys. Rev. A 61, 040301(R) (2000)]. Finally, we introduce a family of entanglement monotones by considering concave and symmetric functions applied to the Schmidt vector.
Fil: Meroi, F.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Losada, M.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Materia
ENTANGLEMENT
SCHIMDT VECTOR
MAJORIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256561

id CONICETDig_f8488dcad5d88c0208540713a1e6bc6a
oai_identifier_str oai:ri.conicet.gov.ar:11336/256561
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extending Schmidt vector from pure to mixed states for characterizing entanglementMeroi, F.Losada, M.Bosyk, Gustavo MartinENTANGLEMENTSCHIMDT VECTORMAJORIZATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this study, we enhance the understanding of entanglement transformations and their quantification by extending the concept of Schmidt vector from pure to mixed bipartite states, exploiting the lattice structure of majorization. The Schmidt vector of a bipartite mixed state is defined using two distinct methods: as a concave roof extension of Schmidt vectors of pure states, or equivalently, from the set of pure states that can be transformed into the mixed state through local operations and classical communication (LOCC). We demonstrate that the Schmidt vector fully characterized separable and maximally entangled states. Furthermore, we prove that the Schmidt vector is monotonic and strongly monotonic under LOCC, giving necessary conditions for conversions between mixed states. Additionally, we extend the definition of the Schmidt rank from pure states to mixed states as the cardinality of the support of the Schmidt vector and show that it is equal to the Schmidt number introduced in previous work [Terhal and Horodecki, Phys. Rev. A 61, 040301(R) (2000)]. Finally, we introduce a family of entanglement monotones by considering concave and symmetric functions applied to the Schmidt vector.Fil: Meroi, F.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Losada, M.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaAmerican Institute of Physics2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256561Meroi, F.; Losada, M.; Bosyk, Gustavo Martin; Extending Schmidt vector from pure to mixed states for characterizing entanglement; American Institute of Physics; APL Quantum; 1; 4; 12-2024; 1-142835-0103CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/apq/article/1/4/046112/3321841/Extending-Schmidt-vector-from-pure-to-mixed-statesinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0232170info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:33:52Zoai:ri.conicet.gov.ar:11336/256561instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:33:53.096CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extending Schmidt vector from pure to mixed states for characterizing entanglement
title Extending Schmidt vector from pure to mixed states for characterizing entanglement
spellingShingle Extending Schmidt vector from pure to mixed states for characterizing entanglement
Meroi, F.
ENTANGLEMENT
SCHIMDT VECTOR
MAJORIZATION
title_short Extending Schmidt vector from pure to mixed states for characterizing entanglement
title_full Extending Schmidt vector from pure to mixed states for characterizing entanglement
title_fullStr Extending Schmidt vector from pure to mixed states for characterizing entanglement
title_full_unstemmed Extending Schmidt vector from pure to mixed states for characterizing entanglement
title_sort Extending Schmidt vector from pure to mixed states for characterizing entanglement
dc.creator.none.fl_str_mv Meroi, F.
Losada, M.
Bosyk, Gustavo Martin
author Meroi, F.
author_facet Meroi, F.
Losada, M.
Bosyk, Gustavo Martin
author_role author
author2 Losada, M.
Bosyk, Gustavo Martin
author2_role author
author
dc.subject.none.fl_str_mv ENTANGLEMENT
SCHIMDT VECTOR
MAJORIZATION
topic ENTANGLEMENT
SCHIMDT VECTOR
MAJORIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this study, we enhance the understanding of entanglement transformations and their quantification by extending the concept of Schmidt vector from pure to mixed bipartite states, exploiting the lattice structure of majorization. The Schmidt vector of a bipartite mixed state is defined using two distinct methods: as a concave roof extension of Schmidt vectors of pure states, or equivalently, from the set of pure states that can be transformed into the mixed state through local operations and classical communication (LOCC). We demonstrate that the Schmidt vector fully characterized separable and maximally entangled states. Furthermore, we prove that the Schmidt vector is monotonic and strongly monotonic under LOCC, giving necessary conditions for conversions between mixed states. Additionally, we extend the definition of the Schmidt rank from pure states to mixed states as the cardinality of the support of the Schmidt vector and show that it is equal to the Schmidt number introduced in previous work [Terhal and Horodecki, Phys. Rev. A 61, 040301(R) (2000)]. Finally, we introduce a family of entanglement monotones by considering concave and symmetric functions applied to the Schmidt vector.
Fil: Meroi, F.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Losada, M.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
description In this study, we enhance the understanding of entanglement transformations and their quantification by extending the concept of Schmidt vector from pure to mixed bipartite states, exploiting the lattice structure of majorization. The Schmidt vector of a bipartite mixed state is defined using two distinct methods: as a concave roof extension of Schmidt vectors of pure states, or equivalently, from the set of pure states that can be transformed into the mixed state through local operations and classical communication (LOCC). We demonstrate that the Schmidt vector fully characterized separable and maximally entangled states. Furthermore, we prove that the Schmidt vector is monotonic and strongly monotonic under LOCC, giving necessary conditions for conversions between mixed states. Additionally, we extend the definition of the Schmidt rank from pure states to mixed states as the cardinality of the support of the Schmidt vector and show that it is equal to the Schmidt number introduced in previous work [Terhal and Horodecki, Phys. Rev. A 61, 040301(R) (2000)]. Finally, we introduce a family of entanglement monotones by considering concave and symmetric functions applied to the Schmidt vector.
publishDate 2024
dc.date.none.fl_str_mv 2024-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256561
Meroi, F.; Losada, M.; Bosyk, Gustavo Martin; Extending Schmidt vector from pure to mixed states for characterizing entanglement; American Institute of Physics; APL Quantum; 1; 4; 12-2024; 1-14
2835-0103
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256561
identifier_str_mv Meroi, F.; Losada, M.; Bosyk, Gustavo Martin; Extending Schmidt vector from pure to mixed states for characterizing entanglement; American Institute of Physics; APL Quantum; 1; 4; 12-2024; 1-14
2835-0103
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/apq/article/1/4/046112/3321841/Extending-Schmidt-vector-from-pure-to-mixed-states
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0232170
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781959396655104
score 12.982451