Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
- Autores
- Segura, Enrique Carlos
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.
Facultad de Informática - Materia
-
Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9590
Ver los metadatos del registro completo
| id |
SEDICI_3e2397c86637ddbdca7cd693a29c1ddf |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9590 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distributionSegura, Enrique CarlosCiencias Informáticasevolutionary computationsimulated annealingthermodynamics of equilibriumdetailed balanceergodicityIn this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.Facultad de Informática2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf178-182http://sedici.unlp.edu.ar/handle/10915/9590enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-3.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T10:53:31Zoai:sedici.unlp.edu.ar:10915/9590Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 10:53:31.782SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution |
| title |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution |
| spellingShingle |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution Segura, Enrique Carlos Ciencias Informáticas evolutionary computation simulated annealing thermodynamics of equilibrium detailed balance ergodicity |
| title_short |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution |
| title_full |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution |
| title_fullStr |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution |
| title_full_unstemmed |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution |
| title_sort |
Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution |
| dc.creator.none.fl_str_mv |
Segura, Enrique Carlos |
| author |
Segura, Enrique Carlos |
| author_facet |
Segura, Enrique Carlos |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas evolutionary computation simulated annealing thermodynamics of equilibrium detailed balance ergodicity |
| topic |
Ciencias Informáticas evolutionary computation simulated annealing thermodynamics of equilibrium detailed balance ergodicity |
| dc.description.none.fl_txt_mv |
In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function. Facultad de Informática |
| description |
In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9590 |
| url |
http://sedici.unlp.edu.ar/handle/10915/9590 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-3.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 178-182 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1852333708388859904 |
| score |
12.952241 |