Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution

Autores
Segura, Enrique Carlos
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.
Facultad de Informática
Materia
Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9590

id SEDICI_3e2397c86637ddbdca7cd693a29c1ddf
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9590
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evolutionary computation with simulated annealing: conditions for optimal equilibrium distributionSegura, Enrique CarlosCiencias Informáticasevolutionary computationsimulated annealingthermodynamics of equilibriumdetailed balanceergodicityIn this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.Facultad de Informática2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf178-182http://sedici.unlp.edu.ar/handle/10915/9590enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-3.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T10:53:31Zoai:sedici.unlp.edu.ar:10915/9590Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 10:53:31.782SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
spellingShingle Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
Segura, Enrique Carlos
Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity
title_short Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_full Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_fullStr Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_full_unstemmed Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
title_sort Evolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
dc.creator.none.fl_str_mv Segura, Enrique Carlos
author Segura, Enrique Carlos
author_facet Segura, Enrique Carlos
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity
topic Ciencias Informáticas
evolutionary computation
simulated annealing
thermodynamics of equilibrium
detailed balance
ergodicity
dc.description.none.fl_txt_mv In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.
Facultad de Informática
description In this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9590
url http://sedici.unlp.edu.ar/handle/10915/9590
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-3.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
178-182
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1852333708388859904
score 12.952241