Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants
- Autores
- Hernández, José; Salto, Carolina; Minetti, Gabriela; Carnero, Mercedes; Sanchez, Mabel Cristina
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Process information is the foundation upon which many common tasks in chemical plants are based. To satisfy information requirements regarding its quality and availability, it is essential to locate an appropriate set of instruments or sensor network (SN) in the plant. The SN designer should decide whether to measure each process variable or not. These decisions are mathematically formulated in terms of binary variables. This results in a combinatorial optimization problem that usually involves many decision binary variables and exhibits multiple solutions locally or globally optimal.In this work, a metaheuristic based on simulated annealing hybridized with strategic oscillation, named HSA_SOTS, is proposed to solve the tackled problem. The performance of HSA_SOTS is evaluated considering several high scale designs with increasing complexities. The results of this metaheuristic outperform the ones presented in the literature.
Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
Fil: Minetti, Gabriela. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina
Fil: Carnero, Mercedes. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
14th International Conference on Chemical and Process Engineering
Bologna
Italia
Italian Association of Chemical Engineering - Materia
-
simulated annealing
sensor network design
optimization problem
quemical plants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136219
Ver los metadatos del registro completo
id |
CONICETDig_a72c6b77b5448af13bc2aec9e0d88443 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136219 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical PlantsHernández, JoséSalto, CarolinaMinetti, GabrielaCarnero, MercedesSanchez, Mabel Cristinasimulated annealingsensor network designoptimization problemquemical plantshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Process information is the foundation upon which many common tasks in chemical plants are based. To satisfy information requirements regarding its quality and availability, it is essential to locate an appropriate set of instruments or sensor network (SN) in the plant. The SN designer should decide whether to measure each process variable or not. These decisions are mathematically formulated in terms of binary variables. This results in a combinatorial optimization problem that usually involves many decision binary variables and exhibits multiple solutions locally or globally optimal.In this work, a metaheuristic based on simulated annealing hybridized with strategic oscillation, named HSA_SOTS, is proposed to solve the tackled problem. The performance of HSA_SOTS is evaluated considering several high scale designs with increasing complexities. The results of this metaheuristic outperform the ones presented in the literature.Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; ArgentinaFil: Minetti, Gabriela. Universidad Nacional de la Pampa. Facultad de Ingeniería; ArgentinaFil: Carnero, Mercedes. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina14th International Conference on Chemical and Process EngineeringBolognaItaliaItalian Association of Chemical EngineeringItalian Association of Chemical Engineering2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136219Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants; 14th International Conference on Chemical and Process Engineering; Bologna; Italia; 2019; 1-62283-9216CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cetjournal.it/index.php/cet/article/view/CET1974119info:eu-repo/semantics/altIdentifier/url/https://www.aidic.it/icheap14/programma/pro.htmlInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:29Zoai:ri.conicet.gov.ar:11336/136219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:29.631CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants |
title |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants |
spellingShingle |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants Hernández, José simulated annealing sensor network design optimization problem quemical plants |
title_short |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants |
title_full |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants |
title_fullStr |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants |
title_full_unstemmed |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants |
title_sort |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants |
dc.creator.none.fl_str_mv |
Hernández, José Salto, Carolina Minetti, Gabriela Carnero, Mercedes Sanchez, Mabel Cristina |
author |
Hernández, José |
author_facet |
Hernández, José Salto, Carolina Minetti, Gabriela Carnero, Mercedes Sanchez, Mabel Cristina |
author_role |
author |
author2 |
Salto, Carolina Minetti, Gabriela Carnero, Mercedes Sanchez, Mabel Cristina |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
simulated annealing sensor network design optimization problem quemical plants |
topic |
simulated annealing sensor network design optimization problem quemical plants |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Process information is the foundation upon which many common tasks in chemical plants are based. To satisfy information requirements regarding its quality and availability, it is essential to locate an appropriate set of instruments or sensor network (SN) in the plant. The SN designer should decide whether to measure each process variable or not. These decisions are mathematically formulated in terms of binary variables. This results in a combinatorial optimization problem that usually involves many decision binary variables and exhibits multiple solutions locally or globally optimal.In this work, a metaheuristic based on simulated annealing hybridized with strategic oscillation, named HSA_SOTS, is proposed to solve the tackled problem. The performance of HSA_SOTS is evaluated considering several high scale designs with increasing complexities. The results of this metaheuristic outperform the ones presented in the literature. Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina Fil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina Fil: Minetti, Gabriela. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina Fil: Carnero, Mercedes. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina 14th International Conference on Chemical and Process Engineering Bologna Italia Italian Association of Chemical Engineering |
description |
Process information is the foundation upon which many common tasks in chemical plants are based. To satisfy information requirements regarding its quality and availability, it is essential to locate an appropriate set of instruments or sensor network (SN) in the plant. The SN designer should decide whether to measure each process variable or not. These decisions are mathematically formulated in terms of binary variables. This results in a combinatorial optimization problem that usually involves many decision binary variables and exhibits multiple solutions locally or globally optimal.In this work, a metaheuristic based on simulated annealing hybridized with strategic oscillation, named HSA_SOTS, is proposed to solve the tackled problem. The performance of HSA_SOTS is evaluated considering several high scale designs with increasing complexities. The results of this metaheuristic outperform the ones presented in the literature. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136219 Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants; 14th International Conference on Chemical and Process Engineering; Bologna; Italia; 2019; 1-6 2283-9216 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136219 |
identifier_str_mv |
Hybrid Simulated Annealing for Optimal Cost Instrumentation in Chemical Plants; 14th International Conference on Chemical and Process Engineering; Bologna; Italia; 2019; 1-6 2283-9216 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cetjournal.it/index.php/cet/article/view/CET1974119 info:eu-repo/semantics/altIdentifier/url/https://www.aidic.it/icheap14/programma/pro.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Italian Association of Chemical Engineering |
publisher.none.fl_str_mv |
Italian Association of Chemical Engineering |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613249124794368 |
score |
13.070432 |