CLUIN – A new method for extracting rules for large databases
- Autores
- Hasperué, Waldo; Corbalán, Leonardo César
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- When there is a need to understand the data stored in a database, one of the main requirements is being able to extract knowledge in the form of rules. Classification strategies allow extracting rules almost naturally. In this paper, the CLUHR classification strategy is extended to work with databases that have nominal attributes. Finally, the results obtained using the databases from the UCI repository are presented and compared with other existing classification models, showing that the algorithm presented requires less computational resources and achieves the same accuracy level and number of extracted rules.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Rule extraction
classification
large datasets
supervised learning
Intelligent agents
base de datos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23603
Ver los metadatos del registro completo
id |
SEDICI_3938590371d00c5d15202f8b63571e67 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23603 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
CLUIN – A new method for extracting rules for large databasesHasperué, WaldoCorbalán, Leonardo CésarCiencias InformáticasRule extractionclassificationlarge datasetssupervised learningIntelligent agentsbase de datosWhen there is a need to understand the data stored in a database, one of the main requirements is being able to extract knowledge in the form of rules. Classification strategies allow extracting rules almost naturally. In this paper, the CLUHR classification strategy is extended to work with databases that have nominal attributes. Finally, the results obtained using the databases from the UCI repository are presented and compared with other existing classification models, showing that the algorithm presented requires less computational resources and achieves the same accuracy level and number of extracted rules.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23603enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:31Zoai:sedici.unlp.edu.ar:10915/23603Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:31.669SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
CLUIN – A new method for extracting rules for large databases |
title |
CLUIN – A new method for extracting rules for large databases |
spellingShingle |
CLUIN – A new method for extracting rules for large databases Hasperué, Waldo Ciencias Informáticas Rule extraction classification large datasets supervised learning Intelligent agents base de datos |
title_short |
CLUIN – A new method for extracting rules for large databases |
title_full |
CLUIN – A new method for extracting rules for large databases |
title_fullStr |
CLUIN – A new method for extracting rules for large databases |
title_full_unstemmed |
CLUIN – A new method for extracting rules for large databases |
title_sort |
CLUIN – A new method for extracting rules for large databases |
dc.creator.none.fl_str_mv |
Hasperué, Waldo Corbalán, Leonardo César |
author |
Hasperué, Waldo |
author_facet |
Hasperué, Waldo Corbalán, Leonardo César |
author_role |
author |
author2 |
Corbalán, Leonardo César |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Rule extraction classification large datasets supervised learning Intelligent agents base de datos |
topic |
Ciencias Informáticas Rule extraction classification large datasets supervised learning Intelligent agents base de datos |
dc.description.none.fl_txt_mv |
When there is a need to understand the data stored in a database, one of the main requirements is being able to extract knowledge in the form of rules. Classification strategies allow extracting rules almost naturally. In this paper, the CLUHR classification strategy is extended to work with databases that have nominal attributes. Finally, the results obtained using the databases from the UCI repository are presented and compared with other existing classification models, showing that the algorithm presented requires less computational resources and achieves the same accuracy level and number of extracted rules. Eje: Workshop Agentes y sistemas inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
When there is a need to understand the data stored in a database, one of the main requirements is being able to extract knowledge in the form of rules. Classification strategies allow extracting rules almost naturally. In this paper, the CLUHR classification strategy is extended to work with databases that have nominal attributes. Finally, the results obtained using the databases from the UCI repository are presented and compared with other existing classification models, showing that the algorithm presented requires less computational resources and achieves the same accuracy level and number of extracted rules. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23603 |
url |
http://sedici.unlp.edu.ar/handle/10915/23603 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615814412500992 |
score |
13.069144 |