Agents that learn how to generate arguments from other agents
- Autores
- Amandi, Analia Adriana; Monteserin, Ariel José
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Learning how to argue is a key ability for a negotiator agent. In this paper, we propose an approach that allows agents to learn how to build arguments by observing how other agents argue in a negotiation context. Particularly, our approach enables the agent to infer the rulesfor argument generation that other agents apply to build their arguments. To carry out this goal, the agent stores the arguments uttered by other agents and the facts of the negotiation context where each argument is uttered. Then, an algorithm for fuzzy generalized association rules is applied to discover the desired rules. This kind of algorithm allows us (a) to obtain general rules that can be applied to dierent negotiation contexts; and (b) to deal with the uncertainty about the knowledge of what facts of the context are taken into account by the agents. The experimental results showed that it is possible to infer argument generation rules from a reduced number of observed arguments.
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
Intelligent Agents
Argumentation-Based Negotiation
Fuzzy Generalized Association Rules
Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6780
Ver los metadatos del registro completo
id |
CONICETDig_49fbc0ae4b7a845118ab89c5396dc859 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6780 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Agents that learn how to generate arguments from other agentsAmandi, Analia AdrianaMonteserin, Ariel JoséIntelligent AgentsArgumentation-Based NegotiationFuzzy Generalized Association RulesLearninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Learning how to argue is a key ability for a negotiator agent. In this paper, we propose an approach that allows agents to learn how to build arguments by observing how other agents argue in a negotiation context. Particularly, our approach enables the agent to infer the rulesfor argument generation that other agents apply to build their arguments. To carry out this goal, the agent stores the arguments uttered by other agents and the facts of the negotiation context where each argument is uttered. Then, an algorithm for fuzzy generalized association rules is applied to discover the desired rules. This kind of algorithm allows us (a) to obtain general rules that can be applied to dierent negotiation contexts; and (b) to deal with the uncertainty about the knowledge of what facts of the context are taken into account by the agents. The experimental results showed that it is possible to infer argument generation rules from a reduced number of observed arguments.Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6780Amandi, Analia Adriana; Monteserin, Ariel José; Agents that learn how to generate arguments from other agents; Springer; New Generation Computing; 32; 1; 1-2014; 31-580288-3635enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00354-014-0102-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00354-014-0102-5info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:51Zoai:ri.conicet.gov.ar:11336/6780instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:51.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Agents that learn how to generate arguments from other agents |
title |
Agents that learn how to generate arguments from other agents |
spellingShingle |
Agents that learn how to generate arguments from other agents Amandi, Analia Adriana Intelligent Agents Argumentation-Based Negotiation Fuzzy Generalized Association Rules Learning |
title_short |
Agents that learn how to generate arguments from other agents |
title_full |
Agents that learn how to generate arguments from other agents |
title_fullStr |
Agents that learn how to generate arguments from other agents |
title_full_unstemmed |
Agents that learn how to generate arguments from other agents |
title_sort |
Agents that learn how to generate arguments from other agents |
dc.creator.none.fl_str_mv |
Amandi, Analia Adriana Monteserin, Ariel José |
author |
Amandi, Analia Adriana |
author_facet |
Amandi, Analia Adriana Monteserin, Ariel José |
author_role |
author |
author2 |
Monteserin, Ariel José |
author2_role |
author |
dc.subject.none.fl_str_mv |
Intelligent Agents Argumentation-Based Negotiation Fuzzy Generalized Association Rules Learning |
topic |
Intelligent Agents Argumentation-Based Negotiation Fuzzy Generalized Association Rules Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Learning how to argue is a key ability for a negotiator agent. In this paper, we propose an approach that allows agents to learn how to build arguments by observing how other agents argue in a negotiation context. Particularly, our approach enables the agent to infer the rulesfor argument generation that other agents apply to build their arguments. To carry out this goal, the agent stores the arguments uttered by other agents and the facts of the negotiation context where each argument is uttered. Then, an algorithm for fuzzy generalized association rules is applied to discover the desired rules. This kind of algorithm allows us (a) to obtain general rules that can be applied to dierent negotiation contexts; and (b) to deal with the uncertainty about the knowledge of what facts of the context are taken into account by the agents. The experimental results showed that it is possible to infer argument generation rules from a reduced number of observed arguments. Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
Learning how to argue is a key ability for a negotiator agent. In this paper, we propose an approach that allows agents to learn how to build arguments by observing how other agents argue in a negotiation context. Particularly, our approach enables the agent to infer the rulesfor argument generation that other agents apply to build their arguments. To carry out this goal, the agent stores the arguments uttered by other agents and the facts of the negotiation context where each argument is uttered. Then, an algorithm for fuzzy generalized association rules is applied to discover the desired rules. This kind of algorithm allows us (a) to obtain general rules that can be applied to dierent negotiation contexts; and (b) to deal with the uncertainty about the knowledge of what facts of the context are taken into account by the agents. The experimental results showed that it is possible to infer argument generation rules from a reduced number of observed arguments. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6780 Amandi, Analia Adriana; Monteserin, Ariel José; Agents that learn how to generate arguments from other agents; Springer; New Generation Computing; 32; 1; 1-2014; 31-58 0288-3635 |
url |
http://hdl.handle.net/11336/6780 |
identifier_str_mv |
Amandi, Analia Adriana; Monteserin, Ariel José; Agents that learn how to generate arguments from other agents; Springer; New Generation Computing; 32; 1; 1-2014; 31-58 0288-3635 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00354-014-0102-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00354-014-0102-5 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613704390279168 |
score |
13.069144 |