An exploratory analysis of methods for extracting credit risk rules
- Autores
- Jimbo Santana, Patricia; Villa Monte, Augusto; Rucci, Enzo; Lanzarini, Laura Cristina; Bariviera, Aurelio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper performs a comparative analysis of two kind of methods for extracting credit risk rules. On one hand we have a set of methods based on the combination of an optimization technique initialized with a neural network. On the other hand there are partition algorithms, based on trees. We show results obtain on two real databases. The main findings are that the set of rules obtained by the first set of methods give a set of rules with a reduced cardinality, with an acceptable precision regarding classification. This is a desirable property for financial institutions, who want to decide credit approval face to face with customers. Bank employees who daily deal with retail customers can be easily trained for selecting the best customers, by using this kind of solutions.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
credit scoring
classification rules
Learning Vector Quantization (LVQ)
Particle Swarm Optimization (PSO) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56769
Ver los metadatos del registro completo
id |
SEDICI_5221b75f5f77058e6a306ae6a701886c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56769 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An exploratory analysis of methods for extracting credit risk rulesJimbo Santana, PatriciaVilla Monte, AugustoRucci, EnzoLanzarini, Laura CristinaBariviera, AurelioCiencias Informáticascredit scoringclassification rulesLearning Vector Quantization (LVQ)Particle Swarm Optimization (PSO)This paper performs a comparative analysis of two kind of methods for extracting credit risk rules. On one hand we have a set of methods based on the combination of an optimization technique initialized with a neural network. On the other hand there are partition algorithms, based on trees. We show results obtain on two real databases. The main findings are that the set of rules obtained by the first set of methods give a set of rules with a reduced cardinality, with an acceptable precision regarding classification. This is a desirable property for financial institutions, who want to decide credit approval face to face with customers. Bank employees who daily deal with retail customers can be easily trained for selecting the best customers, by using this kind of solutions.XIII Workshop Bases de datos y Minería de Datos (WBDMD).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf834-841http://sedici.unlp.edu.ar/handle/10915/56769enginfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:58:38Zoai:sedici.unlp.edu.ar:10915/56769Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:58:38.628SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An exploratory analysis of methods for extracting credit risk rules |
title |
An exploratory analysis of methods for extracting credit risk rules |
spellingShingle |
An exploratory analysis of methods for extracting credit risk rules Jimbo Santana, Patricia Ciencias Informáticas credit scoring classification rules Learning Vector Quantization (LVQ) Particle Swarm Optimization (PSO) |
title_short |
An exploratory analysis of methods for extracting credit risk rules |
title_full |
An exploratory analysis of methods for extracting credit risk rules |
title_fullStr |
An exploratory analysis of methods for extracting credit risk rules |
title_full_unstemmed |
An exploratory analysis of methods for extracting credit risk rules |
title_sort |
An exploratory analysis of methods for extracting credit risk rules |
dc.creator.none.fl_str_mv |
Jimbo Santana, Patricia Villa Monte, Augusto Rucci, Enzo Lanzarini, Laura Cristina Bariviera, Aurelio |
author |
Jimbo Santana, Patricia |
author_facet |
Jimbo Santana, Patricia Villa Monte, Augusto Rucci, Enzo Lanzarini, Laura Cristina Bariviera, Aurelio |
author_role |
author |
author2 |
Villa Monte, Augusto Rucci, Enzo Lanzarini, Laura Cristina Bariviera, Aurelio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas credit scoring classification rules Learning Vector Quantization (LVQ) Particle Swarm Optimization (PSO) |
topic |
Ciencias Informáticas credit scoring classification rules Learning Vector Quantization (LVQ) Particle Swarm Optimization (PSO) |
dc.description.none.fl_txt_mv |
This paper performs a comparative analysis of two kind of methods for extracting credit risk rules. On one hand we have a set of methods based on the combination of an optimization technique initialized with a neural network. On the other hand there are partition algorithms, based on trees. We show results obtain on two real databases. The main findings are that the set of rules obtained by the first set of methods give a set of rules with a reduced cardinality, with an acceptable precision regarding classification. This is a desirable property for financial institutions, who want to decide credit approval face to face with customers. Bank employees who daily deal with retail customers can be easily trained for selecting the best customers, by using this kind of solutions. XIII Workshop Bases de datos y Minería de Datos (WBDMD). Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper performs a comparative analysis of two kind of methods for extracting credit risk rules. On one hand we have a set of methods based on the combination of an optimization technique initialized with a neural network. On the other hand there are partition algorithms, based on trees. We show results obtain on two real databases. The main findings are that the set of rules obtained by the first set of methods give a set of rules with a reduced cardinality, with an acceptable precision regarding classification. This is a desirable property for financial institutions, who want to decide credit approval face to face with customers. Bank employees who daily deal with retail customers can be easily trained for selecting the best customers, by using this kind of solutions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56769 |
url |
http://sedici.unlp.edu.ar/handle/10915/56769 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/hdl/10915/55718 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 834-841 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064034432942080 |
score |
13.22299 |