Quantal effects and MaxEnt
- Autores
- Holik, Federico Hernán; Plastino, Ángel Luis
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Convex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure.
Instituto de Física La Plata
Consejo Nacional de Investigaciones Científicas y Técnicas - Materia
-
Física
Maxent
Effects
Statistical
Quantum - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/96117
Ver los metadatos del registro completo
id |
SEDICI_3882a9a763f169ae10833cf3f4906639 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/96117 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Quantal effects and MaxEntHolik, Federico HernánPlastino, Ángel LuisFísicaMaxentEffectsStatisticalQuantumConvex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure.Instituto de Física La PlataConsejo Nacional de Investigaciones Científicas y Técnicas2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-7http://sedici.unlp.edu.ar/handle/10915/96117enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/74539info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4731769info:eu-repo/semantics/altIdentifier/issn/0022-2488info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4731769info:eu-repo/semantics/altIdentifier/hdl/11336/74539info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:12:15Zoai:sedici.unlp.edu.ar:10915/96117Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:12:15.395SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Quantal effects and MaxEnt |
title |
Quantal effects and MaxEnt |
spellingShingle |
Quantal effects and MaxEnt Holik, Federico Hernán Física Maxent Effects Statistical Quantum |
title_short |
Quantal effects and MaxEnt |
title_full |
Quantal effects and MaxEnt |
title_fullStr |
Quantal effects and MaxEnt |
title_full_unstemmed |
Quantal effects and MaxEnt |
title_sort |
Quantal effects and MaxEnt |
dc.creator.none.fl_str_mv |
Holik, Federico Hernán Plastino, Ángel Luis |
author |
Holik, Federico Hernán |
author_facet |
Holik, Federico Hernán Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Maxent Effects Statistical Quantum |
topic |
Física Maxent Effects Statistical Quantum |
dc.description.none.fl_txt_mv |
Convex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure. Instituto de Física La Plata Consejo Nacional de Investigaciones Científicas y Técnicas |
description |
Convex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/96117 |
url |
http://sedici.unlp.edu.ar/handle/10915/96117 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/74539 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4731769 info:eu-repo/semantics/altIdentifier/issn/0022-2488 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4731769 info:eu-repo/semantics/altIdentifier/hdl/11336/74539 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1-7 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064180261552128 |
score |
13.22299 |