Quantal effects and MaxEnt

Autores
Holik, Federico Hernán; Plastino, Ángel Luis
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Convex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure.
Instituto de Física La Plata
Consejo Nacional de Investigaciones Científicas y Técnicas
Materia
Física
Maxent
Effects
Statistical
Quantum
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/96117

id SEDICI_3882a9a763f169ae10833cf3f4906639
oai_identifier_str oai:sedici.unlp.edu.ar:10915/96117
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Quantal effects and MaxEntHolik, Federico HernánPlastino, Ángel LuisFísicaMaxentEffectsStatisticalQuantumConvex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure.Instituto de Física La PlataConsejo Nacional de Investigaciones Científicas y Técnicas2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-7http://sedici.unlp.edu.ar/handle/10915/96117enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/74539info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4731769info:eu-repo/semantics/altIdentifier/issn/0022-2488info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4731769info:eu-repo/semantics/altIdentifier/hdl/11336/74539info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:12:15Zoai:sedici.unlp.edu.ar:10915/96117Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:12:15.395SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Quantal effects and MaxEnt
title Quantal effects and MaxEnt
spellingShingle Quantal effects and MaxEnt
Holik, Federico Hernán
Física
Maxent
Effects
Statistical
Quantum
title_short Quantal effects and MaxEnt
title_full Quantal effects and MaxEnt
title_fullStr Quantal effects and MaxEnt
title_full_unstemmed Quantal effects and MaxEnt
title_sort Quantal effects and MaxEnt
dc.creator.none.fl_str_mv Holik, Federico Hernán
Plastino, Ángel Luis
author Holik, Federico Hernán
author_facet Holik, Federico Hernán
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv Física
Maxent
Effects
Statistical
Quantum
topic Física
Maxent
Effects
Statistical
Quantum
dc.description.none.fl_txt_mv Convex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure.
Instituto de Física La Plata
Consejo Nacional de Investigaciones Científicas y Técnicas
description Convex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article, we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing MaxEnt in a geometrical and lattice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure.
publishDate 2012
dc.date.none.fl_str_mv 2012-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/96117
url http://sedici.unlp.edu.ar/handle/10915/96117
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/74539
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4731769
info:eu-repo/semantics/altIdentifier/issn/0022-2488
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4731769
info:eu-repo/semantics/altIdentifier/hdl/11336/74539
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1-7
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064180261552128
score 13.22299