Performance of the quantum MaxEnt estimation in the presence of physical symmetries

Autores
Tielas, Diego Alejandro; Losada, Marcelo Adrián; Rebón, Lorena; Holik, Federico Hernán
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
When an informationally complete measurement is not available, the reconstruction of the density operator that describes the state of a quantum system can be obtained, in a reliable way, by adopting the maximum entropy principle (MaxEnt principle), as an additional criterion, to achieve the least biased estimation. In this paper, we study the performance of the MaxEnt method for quantum state estimation when there is prior information about symmetries of the unknown state. We explicitly describe how to work with this method in the most general case, and we present an algorithm that allows to improve the estimation of quantum states with arbitrary symmetries. Furthermore, we implement this algorithm to carry out numerical simulations estimating the density matrix of several three-qubit states of particular interest for quantum information tasks. We observed that, for most states, our approach allows to considerably reduce the number of independent measurements needed to obtain a sufficiently high fidelity in the reconstruction of the density matrix. Moreover, we analyze the performance of the method in realistic scenarios, showing that it is robust even when the effects of finite statistics and experimental noise are considered.
Fil: Tielas, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Losada, Marcelo Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
QUANTUM MAXENT PRINCIPLE
QUANTUM STATE ESTIMATION
SYMMETRIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/205098

id CONICETDig_9abeaa5b18c799d142a62cec71aed706
oai_identifier_str oai:ri.conicet.gov.ar:11336/205098
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Performance of the quantum MaxEnt estimation in the presence of physical symmetriesTielas, Diego AlejandroLosada, Marcelo AdriánRebón, LorenaHolik, Federico HernánQUANTUM MAXENT PRINCIPLEQUANTUM STATE ESTIMATIONSYMMETRIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1When an informationally complete measurement is not available, the reconstruction of the density operator that describes the state of a quantum system can be obtained, in a reliable way, by adopting the maximum entropy principle (MaxEnt principle), as an additional criterion, to achieve the least biased estimation. In this paper, we study the performance of the MaxEnt method for quantum state estimation when there is prior information about symmetries of the unknown state. We explicitly describe how to work with this method in the most general case, and we present an algorithm that allows to improve the estimation of quantum states with arbitrary symmetries. Furthermore, we implement this algorithm to carry out numerical simulations estimating the density matrix of several three-qubit states of particular interest for quantum information tasks. We observed that, for most states, our approach allows to considerably reduce the number of independent measurements needed to obtain a sufficiently high fidelity in the reconstruction of the density matrix. Moreover, we analyze the performance of the method in realistic scenarios, showing that it is robust even when the effects of finite statistics and experimental noise are considered.Fil: Tielas, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Losada, Marcelo Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaSpringer2022-06-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/205098Tielas, Diego Alejandro; Losada, Marcelo Adrián; Rebón, Lorena; Holik, Federico Hernán; Performance of the quantum MaxEnt estimation in the presence of physical symmetries; Springer; Quantum Information Processing; 21; 6; 24-6-2022; 1-201570-0755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11128-022-03568-9info:eu-repo/semantics/altIdentifier/doi/10.1007/s11128-022-03568-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:45Zoai:ri.conicet.gov.ar:11336/205098instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:45.426CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Performance of the quantum MaxEnt estimation in the presence of physical symmetries
title Performance of the quantum MaxEnt estimation in the presence of physical symmetries
spellingShingle Performance of the quantum MaxEnt estimation in the presence of physical symmetries
Tielas, Diego Alejandro
QUANTUM MAXENT PRINCIPLE
QUANTUM STATE ESTIMATION
SYMMETRIES
title_short Performance of the quantum MaxEnt estimation in the presence of physical symmetries
title_full Performance of the quantum MaxEnt estimation in the presence of physical symmetries
title_fullStr Performance of the quantum MaxEnt estimation in the presence of physical symmetries
title_full_unstemmed Performance of the quantum MaxEnt estimation in the presence of physical symmetries
title_sort Performance of the quantum MaxEnt estimation in the presence of physical symmetries
dc.creator.none.fl_str_mv Tielas, Diego Alejandro
Losada, Marcelo Adrián
Rebón, Lorena
Holik, Federico Hernán
author Tielas, Diego Alejandro
author_facet Tielas, Diego Alejandro
Losada, Marcelo Adrián
Rebón, Lorena
Holik, Federico Hernán
author_role author
author2 Losada, Marcelo Adrián
Rebón, Lorena
Holik, Federico Hernán
author2_role author
author
author
dc.subject.none.fl_str_mv QUANTUM MAXENT PRINCIPLE
QUANTUM STATE ESTIMATION
SYMMETRIES
topic QUANTUM MAXENT PRINCIPLE
QUANTUM STATE ESTIMATION
SYMMETRIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv When an informationally complete measurement is not available, the reconstruction of the density operator that describes the state of a quantum system can be obtained, in a reliable way, by adopting the maximum entropy principle (MaxEnt principle), as an additional criterion, to achieve the least biased estimation. In this paper, we study the performance of the MaxEnt method for quantum state estimation when there is prior information about symmetries of the unknown state. We explicitly describe how to work with this method in the most general case, and we present an algorithm that allows to improve the estimation of quantum states with arbitrary symmetries. Furthermore, we implement this algorithm to carry out numerical simulations estimating the density matrix of several three-qubit states of particular interest for quantum information tasks. We observed that, for most states, our approach allows to considerably reduce the number of independent measurements needed to obtain a sufficiently high fidelity in the reconstruction of the density matrix. Moreover, we analyze the performance of the method in realistic scenarios, showing that it is robust even when the effects of finite statistics and experimental noise are considered.
Fil: Tielas, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Losada, Marcelo Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description When an informationally complete measurement is not available, the reconstruction of the density operator that describes the state of a quantum system can be obtained, in a reliable way, by adopting the maximum entropy principle (MaxEnt principle), as an additional criterion, to achieve the least biased estimation. In this paper, we study the performance of the MaxEnt method for quantum state estimation when there is prior information about symmetries of the unknown state. We explicitly describe how to work with this method in the most general case, and we present an algorithm that allows to improve the estimation of quantum states with arbitrary symmetries. Furthermore, we implement this algorithm to carry out numerical simulations estimating the density matrix of several three-qubit states of particular interest for quantum information tasks. We observed that, for most states, our approach allows to considerably reduce the number of independent measurements needed to obtain a sufficiently high fidelity in the reconstruction of the density matrix. Moreover, we analyze the performance of the method in realistic scenarios, showing that it is robust even when the effects of finite statistics and experimental noise are considered.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/205098
Tielas, Diego Alejandro; Losada, Marcelo Adrián; Rebón, Lorena; Holik, Federico Hernán; Performance of the quantum MaxEnt estimation in the presence of physical symmetries; Springer; Quantum Information Processing; 21; 6; 24-6-2022; 1-20
1570-0755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/205098
identifier_str_mv Tielas, Diego Alejandro; Losada, Marcelo Adrián; Rebón, Lorena; Holik, Federico Hernán; Performance of the quantum MaxEnt estimation in the presence of physical symmetries; Springer; Quantum Information Processing; 21; 6; 24-6-2022; 1-20
1570-0755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11128-022-03568-9
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11128-022-03568-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614436485070848
score 13.070432