MaxEnt, second variation, and generalized statistics

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
There are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis’ tools, that for lower bound Hamiltonians, the second variation’s analysis of the entropic functional guarantees that the heavy tail q -distribution constitutes a maximum of Tsallis’ entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.
Instituto de Física La Plata
Materia
Física
MaxEnt
Second variation
Generalized statistics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129627

id SEDICI_4a12dc0ed3b00485786a582d5e3797ae
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129627
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling MaxEnt, second variation, and generalized statisticsPlastino, Ángel LuisRocca, Mario CarlosFísicaMaxEntSecond variationGeneralized statisticsThere are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis’ tools, that for lower bound Hamiltonians, the second variation’s analysis of the entropic functional guarantees that the heavy tail q -distribution constitutes a maximum of Tsallis’ entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.Instituto de Física La Plata2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf572-581http://sedici.unlp.edu.ar/handle/10915/129627enginfo:eu-repo/semantics/altIdentifier/issn/0378-4371info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2015.05.084info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:17Zoai:sedici.unlp.edu.ar:10915/129627Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:17.669SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv MaxEnt, second variation, and generalized statistics
title MaxEnt, second variation, and generalized statistics
spellingShingle MaxEnt, second variation, and generalized statistics
Plastino, Ángel Luis
Física
MaxEnt
Second variation
Generalized statistics
title_short MaxEnt, second variation, and generalized statistics
title_full MaxEnt, second variation, and generalized statistics
title_fullStr MaxEnt, second variation, and generalized statistics
title_full_unstemmed MaxEnt, second variation, and generalized statistics
title_sort MaxEnt, second variation, and generalized statistics
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv Física
MaxEnt
Second variation
Generalized statistics
topic Física
MaxEnt
Second variation
Generalized statistics
dc.description.none.fl_txt_mv There are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis’ tools, that for lower bound Hamiltonians, the second variation’s analysis of the entropic functional guarantees that the heavy tail q -distribution constitutes a maximum of Tsallis’ entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.
Instituto de Física La Plata
description There are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis’ tools, that for lower bound Hamiltonians, the second variation’s analysis of the entropic functional guarantees that the heavy tail q -distribution constitutes a maximum of Tsallis’ entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129627
url http://sedici.unlp.edu.ar/handle/10915/129627
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0378-4371
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2015.05.084
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
572-581
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616192449314816
score 13.070432