Ingeniería de software para clasificar patrones cognitivo conductuales

Autores
Roldán, Marcelo Fabio; Montejano, Germán Antonio; Funes, Ana; Riesco, Daniel Eduardo
Año de publicación
2013
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En la presente línea de investigación nos proponemos utilizar el Adaptive Business Intelligence (ABI) como herramienta de extracción de conocimiento en bases de datos, para clasificar probabilísticamente y con un grado de error aceptable, aquellas causalidades del fracaso de los aspirantes a sub oficiales de policía que ingresan en la escuela de la fuerza. A partir de allí, generar aplicaciones informáticas que permitan evaluar al futuro aspirante y determinar predictivamente su factibilidad de éxito en la escuela. Esto es posible, en concordancia con la puesta en práctica de una metodología de reciente creación [RFM12, RDF13], la que facilita el desarrollo de aplicaciones basadas en Business Intelligence, favorece el uso de métodos de predicción y técnicas de optimización. Este análisis de datos, para encontrar los patrones que determinan las causalidades de las bajas, lo realizaremos optimizando aquello que se denomina Extracción de Conocimiento de Bases de Datos (KDD), mediante una tecnología actualizada a través de la metodología que la implementa de manera simplificada y práctica. Estas causalidades principales, por las cuales los aspirantes no culminan su formación, se encontrarán de una manera probabilística.
Eje: Bases de Datos y Minería de Datos
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Psicometría
Data mining
cognitivo conductual
adaptive business intelligence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/27101

id SEDICI_3736e1fffcc246882e927ed29bec6c66
oai_identifier_str oai:sedici.unlp.edu.ar:10915/27101
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Ingeniería de software para clasificar patrones cognitivo conductualesRoldán, Marcelo FabioMontejano, Germán AntonioFunes, AnaRiesco, Daniel EduardoCiencias InformáticasPsicometríaData miningcognitivo conductualadaptive business intelligenceEn la presente línea de investigación nos proponemos utilizar el Adaptive Business Intelligence (ABI) como herramienta de extracción de conocimiento en bases de datos, para clasificar probabilísticamente y con un grado de error aceptable, aquellas causalidades del fracaso de los aspirantes a sub oficiales de policía que ingresan en la escuela de la fuerza. A partir de allí, generar aplicaciones informáticas que permitan evaluar al futuro aspirante y determinar predictivamente su factibilidad de éxito en la escuela. Esto es posible, en concordancia con la puesta en práctica de una metodología de reciente creación [RFM12, RDF13], la que facilita el desarrollo de aplicaciones basadas en Business Intelligence, favorece el uso de métodos de predicción y técnicas de optimización. Este análisis de datos, para encontrar los patrones que determinan las causalidades de las bajas, lo realizaremos optimizando aquello que se denomina Extracción de Conocimiento de Bases de Datos (KDD), mediante una tecnología actualizada a través de la metodología que la implementa de manera simplificada y práctica. Estas causalidades principales, por las cuales los aspirantes no culminan su formación, se encontrarán de una manera probabilística.Eje: Bases de Datos y Minería de DatosRed de Universidades con Carreras en Informática (RedUNCI)2013-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf83-86http://sedici.unlp.edu.ar/handle/10915/27101spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:38:21Zoai:sedici.unlp.edu.ar:10915/27101Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:38:21.718SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Ingeniería de software para clasificar patrones cognitivo conductuales
title Ingeniería de software para clasificar patrones cognitivo conductuales
spellingShingle Ingeniería de software para clasificar patrones cognitivo conductuales
Roldán, Marcelo Fabio
Ciencias Informáticas
Psicometría
Data mining
cognitivo conductual
adaptive business intelligence
title_short Ingeniería de software para clasificar patrones cognitivo conductuales
title_full Ingeniería de software para clasificar patrones cognitivo conductuales
title_fullStr Ingeniería de software para clasificar patrones cognitivo conductuales
title_full_unstemmed Ingeniería de software para clasificar patrones cognitivo conductuales
title_sort Ingeniería de software para clasificar patrones cognitivo conductuales
dc.creator.none.fl_str_mv Roldán, Marcelo Fabio
Montejano, Germán Antonio
Funes, Ana
Riesco, Daniel Eduardo
author Roldán, Marcelo Fabio
author_facet Roldán, Marcelo Fabio
Montejano, Germán Antonio
Funes, Ana
Riesco, Daniel Eduardo
author_role author
author2 Montejano, Germán Antonio
Funes, Ana
Riesco, Daniel Eduardo
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Psicometría
Data mining
cognitivo conductual
adaptive business intelligence
topic Ciencias Informáticas
Psicometría
Data mining
cognitivo conductual
adaptive business intelligence
dc.description.none.fl_txt_mv En la presente línea de investigación nos proponemos utilizar el Adaptive Business Intelligence (ABI) como herramienta de extracción de conocimiento en bases de datos, para clasificar probabilísticamente y con un grado de error aceptable, aquellas causalidades del fracaso de los aspirantes a sub oficiales de policía que ingresan en la escuela de la fuerza. A partir de allí, generar aplicaciones informáticas que permitan evaluar al futuro aspirante y determinar predictivamente su factibilidad de éxito en la escuela. Esto es posible, en concordancia con la puesta en práctica de una metodología de reciente creación [RFM12, RDF13], la que facilita el desarrollo de aplicaciones basadas en Business Intelligence, favorece el uso de métodos de predicción y técnicas de optimización. Este análisis de datos, para encontrar los patrones que determinan las causalidades de las bajas, lo realizaremos optimizando aquello que se denomina Extracción de Conocimiento de Bases de Datos (KDD), mediante una tecnología actualizada a través de la metodología que la implementa de manera simplificada y práctica. Estas causalidades principales, por las cuales los aspirantes no culminan su formación, se encontrarán de una manera probabilística.
Eje: Bases de Datos y Minería de Datos
Red de Universidades con Carreras en Informática (RedUNCI)
description En la presente línea de investigación nos proponemos utilizar el Adaptive Business Intelligence (ABI) como herramienta de extracción de conocimiento en bases de datos, para clasificar probabilísticamente y con un grado de error aceptable, aquellas causalidades del fracaso de los aspirantes a sub oficiales de policía que ingresan en la escuela de la fuerza. A partir de allí, generar aplicaciones informáticas que permitan evaluar al futuro aspirante y determinar predictivamente su factibilidad de éxito en la escuela. Esto es posible, en concordancia con la puesta en práctica de una metodología de reciente creación [RFM12, RDF13], la que facilita el desarrollo de aplicaciones basadas en Business Intelligence, favorece el uso de métodos de predicción y técnicas de optimización. Este análisis de datos, para encontrar los patrones que determinan las causalidades de las bajas, lo realizaremos optimizando aquello que se denomina Extracción de Conocimiento de Bases de Datos (KDD), mediante una tecnología actualizada a través de la metodología que la implementa de manera simplificada y práctica. Estas causalidades principales, por las cuales los aspirantes no culminan su formación, se encontrarán de una manera probabilística.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/27101
url http://sedici.unlp.edu.ar/handle/10915/27101
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
83-86
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782850715615232
score 12.982451