Herramientas de aprendizaje automático para magnetotelúrica

Autores
Montenegro, Simón
Año de publicación
2024
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión aceptada
Colaborador/a o director/a de tesis
Zyserman, Fabio Iván
Elias, Matías Walter
Descripción
La tesis se centra en ensayar posibles aplicaciones del método magnetotelúrico (MT) utilizando distintos métodos de aprendizaje no supervisado. Se pretende analizar las métricas específicas para los métodos K-Means y Mapas Autoorganizados (Self-Organizing Maps, SOM) y explorar su relación con el contexto geofísico. Además, se busca comparar la eficiencia de ambas técnicas de aprendizaje y concluir sobre la factibilidad de su uso en el análisis de datos MT. Para alcanzar estos objetivos, se realizaron varias tareas. Primero, se llevó a cabo un entrenamiento en la utilización del código computacional para medios isotrópicos con ModEM (Modular System for Electromagnetic inversion), lo que permitió un análisis detallado de la respuesta magnetotelúrica de estos medios. Posteriormente, se seleccionaron casos de estudio, se realizaron simulaciones numéricas y se analizaron los resultados obtenidos. También se eligieron las herramientas de aprendizaje automático más adecuadas y se completó un entrenamiento en su uso. Finalmente, estas herramientas se aplicaron para la caracterización de la estructura conductiva de medios bidimensionales heterogéneos.
Geofísico
Universidad Nacional de La Plata
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Geofísica
Magnetotelúrica
Aprendizaje automático
No supervisado
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/168316

id SEDICI_370809c6313e43f47b48f243f9e1309b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/168316
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Herramientas de aprendizaje automático para magnetotelúricaMontenegro, SimónGeofísicaMagnetotelúricaAprendizaje automáticoNo supervisadoLa tesis se centra en ensayar posibles aplicaciones del método magnetotelúrico (MT) utilizando distintos métodos de aprendizaje no supervisado. Se pretende analizar las métricas específicas para los métodos K-Means y Mapas Autoorganizados (Self-Organizing Maps, SOM) y explorar su relación con el contexto geofísico. Además, se busca comparar la eficiencia de ambas técnicas de aprendizaje y concluir sobre la factibilidad de su uso en el análisis de datos MT. Para alcanzar estos objetivos, se realizaron varias tareas. Primero, se llevó a cabo un entrenamiento en la utilización del código computacional para medios isotrópicos con ModEM (Modular System for Electromagnetic inversion), lo que permitió un análisis detallado de la respuesta magnetotelúrica de estos medios. Posteriormente, se seleccionaron casos de estudio, se realizaron simulaciones numéricas y se analizaron los resultados obtenidos. También se eligieron las herramientas de aprendizaje automático más adecuadas y se completó un entrenamiento en su uso. Finalmente, estas herramientas se aplicaron para la caracterización de la estructura conductiva de medios bidimensionales heterogéneos.GeofísicoUniversidad Nacional de La PlataFacultad de Ciencias Astronómicas y GeofísicasZyserman, Fabio IvánElias, Matías Walter2024-07-03info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/168316spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:44:51Zoai:sedici.unlp.edu.ar:10915/168316Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:44:52.015SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Herramientas de aprendizaje automático para magnetotelúrica
title Herramientas de aprendizaje automático para magnetotelúrica
spellingShingle Herramientas de aprendizaje automático para magnetotelúrica
Montenegro, Simón
Geofísica
Magnetotelúrica
Aprendizaje automático
No supervisado
title_short Herramientas de aprendizaje automático para magnetotelúrica
title_full Herramientas de aprendizaje automático para magnetotelúrica
title_fullStr Herramientas de aprendizaje automático para magnetotelúrica
title_full_unstemmed Herramientas de aprendizaje automático para magnetotelúrica
title_sort Herramientas de aprendizaje automático para magnetotelúrica
dc.creator.none.fl_str_mv Montenegro, Simón
author Montenegro, Simón
author_facet Montenegro, Simón
author_role author
dc.contributor.none.fl_str_mv Zyserman, Fabio Iván
Elias, Matías Walter
dc.subject.none.fl_str_mv Geofísica
Magnetotelúrica
Aprendizaje automático
No supervisado
topic Geofísica
Magnetotelúrica
Aprendizaje automático
No supervisado
dc.description.none.fl_txt_mv La tesis se centra en ensayar posibles aplicaciones del método magnetotelúrico (MT) utilizando distintos métodos de aprendizaje no supervisado. Se pretende analizar las métricas específicas para los métodos K-Means y Mapas Autoorganizados (Self-Organizing Maps, SOM) y explorar su relación con el contexto geofísico. Además, se busca comparar la eficiencia de ambas técnicas de aprendizaje y concluir sobre la factibilidad de su uso en el análisis de datos MT. Para alcanzar estos objetivos, se realizaron varias tareas. Primero, se llevó a cabo un entrenamiento en la utilización del código computacional para medios isotrópicos con ModEM (Modular System for Electromagnetic inversion), lo que permitió un análisis detallado de la respuesta magnetotelúrica de estos medios. Posteriormente, se seleccionaron casos de estudio, se realizaron simulaciones numéricas y se analizaron los resultados obtenidos. También se eligieron las herramientas de aprendizaje automático más adecuadas y se completó un entrenamiento en su uso. Finalmente, estas herramientas se aplicaron para la caracterización de la estructura conductiva de medios bidimensionales heterogéneos.
Geofísico
Universidad Nacional de La Plata
Facultad de Ciencias Astronómicas y Geofísicas
description La tesis se centra en ensayar posibles aplicaciones del método magnetotelúrico (MT) utilizando distintos métodos de aprendizaje no supervisado. Se pretende analizar las métricas específicas para los métodos K-Means y Mapas Autoorganizados (Self-Organizing Maps, SOM) y explorar su relación con el contexto geofísico. Además, se busca comparar la eficiencia de ambas técnicas de aprendizaje y concluir sobre la factibilidad de su uso en el análisis de datos MT. Para alcanzar estos objetivos, se realizaron varias tareas. Primero, se llevó a cabo un entrenamiento en la utilización del código computacional para medios isotrópicos con ModEM (Modular System for Electromagnetic inversion), lo que permitió un análisis detallado de la respuesta magnetotelúrica de estos medios. Posteriormente, se seleccionaron casos de estudio, se realizaron simulaciones numéricas y se analizaron los resultados obtenidos. También se eligieron las herramientas de aprendizaje automático más adecuadas y se completó un entrenamiento en su uso. Finalmente, estas herramientas se aplicaron para la caracterización de la estructura conductiva de medios bidimensionales heterogéneos.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-03
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/acceptedVersion
Tesis de grado
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/168316
url http://sedici.unlp.edu.ar/handle/10915/168316
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616315517534208
score 13.069144