4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles

Autores
Torresan, Veronica; Forrer, Daniel; Guadagnini, Andrea; Badocco, Denis; Pastore, Paolo; Casarin, Maurizio; Selloni, Annabella; Coral, D. F.; Ceolín, Marcelo Raúl; Fernández van Raap, Marcela Beatriz; Busato, Alice; Marzola, Pasquina; Spinelli, Antonello E.; Amendola, Vincenzo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Several examples of nanosized therapeutic and imaging agents have been proposed to date, yet for most of them there is a low chance of clinical translation due to long-term in vivo retention and toxicity risks. The realization of nanoagents that can be removed from the body after use remains thus a great challenge. Here, we demonstrate that nonequilibrium gold–iron alloys behave as shape-morphing nanocrystals with the properties of self-degradable multifunctional nanomedicines. DFT calculations combined with mixing enthalpy-weighted alloying simulations predict that Au–Fe solid solutions can exhibit self-degradation in an aqueous environment if the Fe content exceeds a threshold that depends upon element topology in the nanocrystals. Exploiting a laser-assisted synthesis route, we experimentally confirm that nonequilibrium Au–Fe nanoalloys have a 4D behavior, that is, the ability to change shape, size, and structure over time, becoming ultrasmall Au-rich nanocrystals. In vivo tests show the potential of these transformable Au–Fe nanoalloys as efficient multimodal contrast agents for magnetic resonance imaging and computed X-ray absorption tomography and further demonstrate their self-degradation over time, with a significant reduction of long-term accumulation in the body, when compared to benchmark gold or iron oxide contrast agents. Hence, Au–Fe alloy nanoparticles exhibiting 4D behavior can respond to the need for safe and degradable inorganic multifunctional nanomedicines required in clinical translation.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Instituto de Física La Plata
Materia
Física
Química
Au nanoparticles
Fe nanoparticles
alloys
nanomedicine
degradable materials
CT
MRI
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/139039

id SEDICI_3705636e0739432c399e2d0d125ec7f7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/139039
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy NanoparticlesTorresan, VeronicaForrer, DanielGuadagnini, AndreaBadocco, DenisPastore, PaoloCasarin, MaurizioSelloni, AnnabellaCoral, D. F.Ceolín, Marcelo RaúlFernández van Raap, Marcela BeatrizBusato, AliceMarzola, PasquinaSpinelli, Antonello E.Amendola, VincenzoFísicaQuímicaAu nanoparticlesFe nanoparticlesalloysnanomedicinedegradable materialsCTMRISeveral examples of nanosized therapeutic and imaging agents have been proposed to date, yet for most of them there is a low chance of clinical translation due to long-term in vivo retention and toxicity risks. The realization of nanoagents that can be removed from the body after use remains thus a great challenge. Here, we demonstrate that nonequilibrium gold–iron alloys behave as shape-morphing nanocrystals with the properties of self-degradable multifunctional nanomedicines. DFT calculations combined with mixing enthalpy-weighted alloying simulations predict that Au–Fe solid solutions can exhibit self-degradation in an aqueous environment if the Fe content exceeds a threshold that depends upon element topology in the nanocrystals. Exploiting a laser-assisted synthesis route, we experimentally confirm that nonequilibrium Au–Fe nanoalloys have a 4D behavior, that is, the ability to change shape, size, and structure over time, becoming ultrasmall Au-rich nanocrystals. In vivo tests show the potential of these transformable Au–Fe nanoalloys as efficient multimodal contrast agents for magnetic resonance imaging and computed X-ray absorption tomography and further demonstrate their self-degradation over time, with a significant reduction of long-term accumulation in the body, when compared to benchmark gold or iron oxide contrast agents. Hence, Au–Fe alloy nanoparticles exhibiting 4D behavior can respond to the need for safe and degradable inorganic multifunctional nanomedicines required in clinical translation.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasInstituto de Física La Plata2020-09-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf12840-12853http://sedici.unlp.edu.ar/handle/10915/139039enginfo:eu-repo/semantics/altIdentifier/issn/1936-086Xinfo:eu-repo/semantics/altIdentifier/issn/1936-0851info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.0c03614info:eu-repo/semantics/altIdentifier/pmid/32877170info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:52Zoai:sedici.unlp.edu.ar:10915/139039Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:52.467SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
title 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
spellingShingle 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
Torresan, Veronica
Física
Química
Au nanoparticles
Fe nanoparticles
alloys
nanomedicine
degradable materials
CT
MRI
title_short 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
title_full 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
title_fullStr 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
title_full_unstemmed 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
title_sort 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles
dc.creator.none.fl_str_mv Torresan, Veronica
Forrer, Daniel
Guadagnini, Andrea
Badocco, Denis
Pastore, Paolo
Casarin, Maurizio
Selloni, Annabella
Coral, D. F.
Ceolín, Marcelo Raúl
Fernández van Raap, Marcela Beatriz
Busato, Alice
Marzola, Pasquina
Spinelli, Antonello E.
Amendola, Vincenzo
author Torresan, Veronica
author_facet Torresan, Veronica
Forrer, Daniel
Guadagnini, Andrea
Badocco, Denis
Pastore, Paolo
Casarin, Maurizio
Selloni, Annabella
Coral, D. F.
Ceolín, Marcelo Raúl
Fernández van Raap, Marcela Beatriz
Busato, Alice
Marzola, Pasquina
Spinelli, Antonello E.
Amendola, Vincenzo
author_role author
author2 Forrer, Daniel
Guadagnini, Andrea
Badocco, Denis
Pastore, Paolo
Casarin, Maurizio
Selloni, Annabella
Coral, D. F.
Ceolín, Marcelo Raúl
Fernández van Raap, Marcela Beatriz
Busato, Alice
Marzola, Pasquina
Spinelli, Antonello E.
Amendola, Vincenzo
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Física
Química
Au nanoparticles
Fe nanoparticles
alloys
nanomedicine
degradable materials
CT
MRI
topic Física
Química
Au nanoparticles
Fe nanoparticles
alloys
nanomedicine
degradable materials
CT
MRI
dc.description.none.fl_txt_mv Several examples of nanosized therapeutic and imaging agents have been proposed to date, yet for most of them there is a low chance of clinical translation due to long-term in vivo retention and toxicity risks. The realization of nanoagents that can be removed from the body after use remains thus a great challenge. Here, we demonstrate that nonequilibrium gold–iron alloys behave as shape-morphing nanocrystals with the properties of self-degradable multifunctional nanomedicines. DFT calculations combined with mixing enthalpy-weighted alloying simulations predict that Au–Fe solid solutions can exhibit self-degradation in an aqueous environment if the Fe content exceeds a threshold that depends upon element topology in the nanocrystals. Exploiting a laser-assisted synthesis route, we experimentally confirm that nonequilibrium Au–Fe nanoalloys have a 4D behavior, that is, the ability to change shape, size, and structure over time, becoming ultrasmall Au-rich nanocrystals. In vivo tests show the potential of these transformable Au–Fe nanoalloys as efficient multimodal contrast agents for magnetic resonance imaging and computed X-ray absorption tomography and further demonstrate their self-degradation over time, with a significant reduction of long-term accumulation in the body, when compared to benchmark gold or iron oxide contrast agents. Hence, Au–Fe alloy nanoparticles exhibiting 4D behavior can respond to the need for safe and degradable inorganic multifunctional nanomedicines required in clinical translation.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Instituto de Física La Plata
description Several examples of nanosized therapeutic and imaging agents have been proposed to date, yet for most of them there is a low chance of clinical translation due to long-term in vivo retention and toxicity risks. The realization of nanoagents that can be removed from the body after use remains thus a great challenge. Here, we demonstrate that nonequilibrium gold–iron alloys behave as shape-morphing nanocrystals with the properties of self-degradable multifunctional nanomedicines. DFT calculations combined with mixing enthalpy-weighted alloying simulations predict that Au–Fe solid solutions can exhibit self-degradation in an aqueous environment if the Fe content exceeds a threshold that depends upon element topology in the nanocrystals. Exploiting a laser-assisted synthesis route, we experimentally confirm that nonequilibrium Au–Fe nanoalloys have a 4D behavior, that is, the ability to change shape, size, and structure over time, becoming ultrasmall Au-rich nanocrystals. In vivo tests show the potential of these transformable Au–Fe nanoalloys as efficient multimodal contrast agents for magnetic resonance imaging and computed X-ray absorption tomography and further demonstrate their self-degradation over time, with a significant reduction of long-term accumulation in the body, when compared to benchmark gold or iron oxide contrast agents. Hence, Au–Fe alloy nanoparticles exhibiting 4D behavior can respond to the need for safe and degradable inorganic multifunctional nanomedicines required in clinical translation.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/139039
url http://sedici.unlp.edu.ar/handle/10915/139039
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1936-086X
info:eu-repo/semantics/altIdentifier/issn/1936-0851
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.0c03614
info:eu-repo/semantics/altIdentifier/pmid/32877170
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
12840-12853
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616198328680448
score 13.070432