Uso de GPU computing en matemática experimental

Autores
Correa, Carlos
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Este trabajo supone el uso de herramientas computacionales, capaces de analizar grandes cantidades de datos, para dar credibilidad, mediante la búsqueda de contraejemplos, a una nueva conjetura sobre números coprimos. Dicha conjetura postula que: “Entre dos pares de múltiplos consecutivos de todo número natural k>1 siempre hay al menos un número que es coprimo de todos los números naturales≤ k”. Cuanto más extensiva sea la búsqueda de contraejemplos más fuerte se hará la conjetura planteada. Por ello, a fin de hacer que dicha búsqueda resulte además eficiente, en este trabajo se exploran y aplican técnicas de computación paralela SIMD de alta performance. Se trata, en concreto, del uso de GPU Computing y programación CUDA como plataforma para la implementación y ensayo de dos algoritmos de cribado especialmente diseñados para la búsqueda de coprimos. Uno de estos algoritmos fue diseñado respetando estrictamente lo que establece la conjetura, pero es a su vez el que demanda más recursos computacionales (tiempo + memoria). El segundo algoritmo fue concebido aplicando más restricciones que las establecidas por la conjetura original. Esta idea permitió, a riesgo de toparse con “pseudo-contraejemplos”, reducir significativamente la demanda de dichos recursos computacionales. Existiendo de todos modos la posibilidad de volver a aplicar la conjetura original, y verificarla sobre algún punto de la búsqueda, si apareciera un posible “pseudo-contraejemplo”.
Eje: Procesamiento Distribuído y Paralelo
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
teoría de números
Parallel processing
GPU computing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/46217

id SEDICI_36c34aa269221f2627176f861e211f47
oai_identifier_str oai:sedici.unlp.edu.ar:10915/46217
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Uso de GPU computing en matemática experimentalCorrea, CarlosCiencias Informáticasteoría de númerosParallel processingGPU computingEste trabajo supone el uso de herramientas computacionales, capaces de analizar grandes cantidades de datos, para dar credibilidad, mediante la búsqueda de contraejemplos, a una nueva conjetura sobre números coprimos. Dicha conjetura postula que: “Entre dos pares de múltiplos consecutivos de todo número natural k>1 siempre hay al menos un número que es coprimo de todos los números naturales≤ k”. Cuanto más extensiva sea la búsqueda de contraejemplos más fuerte se hará la conjetura planteada. Por ello, a fin de hacer que dicha búsqueda resulte además eficiente, en este trabajo se exploran y aplican técnicas de computación paralela SIMD de alta performance. Se trata, en concreto, del uso de GPU Computing y programación CUDA como plataforma para la implementación y ensayo de dos algoritmos de cribado especialmente diseñados para la búsqueda de coprimos. Uno de estos algoritmos fue diseñado respetando estrictamente lo que establece la conjetura, pero es a su vez el que demanda más recursos computacionales (tiempo + memoria). El segundo algoritmo fue concebido aplicando más restricciones que las establecidas por la conjetura original. Esta idea permitió, a riesgo de toparse con “pseudo-contraejemplos”, reducir significativamente la demanda de dichos recursos computacionales. Existiendo de todos modos la posibilidad de volver a aplicar la conjetura original, y verificarla sobre algún punto de la búsqueda, si apareciera un posible “pseudo-contraejemplo”.Eje: Procesamiento Distribuído y ParaleloRed de Universidades con Carreras en Informática (RedUNCI)2015-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/46217spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:42:30Zoai:sedici.unlp.edu.ar:10915/46217Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:42:30.802SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Uso de GPU computing en matemática experimental
title Uso de GPU computing en matemática experimental
spellingShingle Uso de GPU computing en matemática experimental
Correa, Carlos
Ciencias Informáticas
teoría de números
Parallel processing
GPU computing
title_short Uso de GPU computing en matemática experimental
title_full Uso de GPU computing en matemática experimental
title_fullStr Uso de GPU computing en matemática experimental
title_full_unstemmed Uso de GPU computing en matemática experimental
title_sort Uso de GPU computing en matemática experimental
dc.creator.none.fl_str_mv Correa, Carlos
author Correa, Carlos
author_facet Correa, Carlos
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
teoría de números
Parallel processing
GPU computing
topic Ciencias Informáticas
teoría de números
Parallel processing
GPU computing
dc.description.none.fl_txt_mv Este trabajo supone el uso de herramientas computacionales, capaces de analizar grandes cantidades de datos, para dar credibilidad, mediante la búsqueda de contraejemplos, a una nueva conjetura sobre números coprimos. Dicha conjetura postula que: “Entre dos pares de múltiplos consecutivos de todo número natural k>1 siempre hay al menos un número que es coprimo de todos los números naturales≤ k”. Cuanto más extensiva sea la búsqueda de contraejemplos más fuerte se hará la conjetura planteada. Por ello, a fin de hacer que dicha búsqueda resulte además eficiente, en este trabajo se exploran y aplican técnicas de computación paralela SIMD de alta performance. Se trata, en concreto, del uso de GPU Computing y programación CUDA como plataforma para la implementación y ensayo de dos algoritmos de cribado especialmente diseñados para la búsqueda de coprimos. Uno de estos algoritmos fue diseñado respetando estrictamente lo que establece la conjetura, pero es a su vez el que demanda más recursos computacionales (tiempo + memoria). El segundo algoritmo fue concebido aplicando más restricciones que las establecidas por la conjetura original. Esta idea permitió, a riesgo de toparse con “pseudo-contraejemplos”, reducir significativamente la demanda de dichos recursos computacionales. Existiendo de todos modos la posibilidad de volver a aplicar la conjetura original, y verificarla sobre algún punto de la búsqueda, si apareciera un posible “pseudo-contraejemplo”.
Eje: Procesamiento Distribuído y Paralelo
Red de Universidades con Carreras en Informática (RedUNCI)
description Este trabajo supone el uso de herramientas computacionales, capaces de analizar grandes cantidades de datos, para dar credibilidad, mediante la búsqueda de contraejemplos, a una nueva conjetura sobre números coprimos. Dicha conjetura postula que: “Entre dos pares de múltiplos consecutivos de todo número natural k>1 siempre hay al menos un número que es coprimo de todos los números naturales≤ k”. Cuanto más extensiva sea la búsqueda de contraejemplos más fuerte se hará la conjetura planteada. Por ello, a fin de hacer que dicha búsqueda resulte además eficiente, en este trabajo se exploran y aplican técnicas de computación paralela SIMD de alta performance. Se trata, en concreto, del uso de GPU Computing y programación CUDA como plataforma para la implementación y ensayo de dos algoritmos de cribado especialmente diseñados para la búsqueda de coprimos. Uno de estos algoritmos fue diseñado respetando estrictamente lo que establece la conjetura, pero es a su vez el que demanda más recursos computacionales (tiempo + memoria). El segundo algoritmo fue concebido aplicando más restricciones que las establecidas por la conjetura original. Esta idea permitió, a riesgo de toparse con “pseudo-contraejemplos”, reducir significativamente la demanda de dichos recursos computacionales. Existiendo de todos modos la posibilidad de volver a aplicar la conjetura original, y verificarla sobre algún punto de la búsqueda, si apareciera un posible “pseudo-contraejemplo”.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/46217
url http://sedici.unlp.edu.ar/handle/10915/46217
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847978450575425536
score 13.087074