Global and partial function approximation with evolutionary algorithms
- Autores
- Kavka, Carlos; Roggero, Patricia; Schoenauer, Marc
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present an evolutionary algorithm that evolves a population of local approximators in order to fit an unknown function. The evolutionary algorithm performs a simultaneous learning of simple local approximators together with the regions in which the local approximators are applied. By combining these simple local approximators, the domain is in fact partitioned in the Voronoi diagram that has as centers, the center points of the region in which each local approximator is efficient and useful. Both continuous and non-continuous approaches are considered. The algorithm seems promising in order to develop good neural networks for function approximation.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Evolutionary computation
Voronoi diagrams
Neural nets
Algorithms
ARTIFICIAL INTELLIGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23402
Ver los metadatos del registro completo
id |
SEDICI_35ec40ea52b608d119843ce3517d3dd6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23402 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Global and partial function approximation with evolutionary algorithmsKavka, CarlosRoggero, PatriciaSchoenauer, MarcCiencias InformáticasEvolutionary computationVoronoi diagramsNeural netsAlgorithmsARTIFICIAL INTELLIGENCEWe present an evolutionary algorithm that evolves a population of local approximators in order to fit an unknown function. The evolutionary algorithm performs a simultaneous learning of simple local approximators together with the regions in which the local approximators are applied. By combining these simple local approximators, the domain is in fact partitioned in the Voronoi diagram that has as centers, the center points of the region in which each local approximator is efficient and useful. Both continuous and non-continuous approaches are considered. The algorithm seems promising in order to develop good neural networks for function approximation.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23402enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:12Zoai:sedici.unlp.edu.ar:10915/23402Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:13.157SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Global and partial function approximation with evolutionary algorithms |
title |
Global and partial function approximation with evolutionary algorithms |
spellingShingle |
Global and partial function approximation with evolutionary algorithms Kavka, Carlos Ciencias Informáticas Evolutionary computation Voronoi diagrams Neural nets Algorithms ARTIFICIAL INTELLIGENCE |
title_short |
Global and partial function approximation with evolutionary algorithms |
title_full |
Global and partial function approximation with evolutionary algorithms |
title_fullStr |
Global and partial function approximation with evolutionary algorithms |
title_full_unstemmed |
Global and partial function approximation with evolutionary algorithms |
title_sort |
Global and partial function approximation with evolutionary algorithms |
dc.creator.none.fl_str_mv |
Kavka, Carlos Roggero, Patricia Schoenauer, Marc |
author |
Kavka, Carlos |
author_facet |
Kavka, Carlos Roggero, Patricia Schoenauer, Marc |
author_role |
author |
author2 |
Roggero, Patricia Schoenauer, Marc |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Evolutionary computation Voronoi diagrams Neural nets Algorithms ARTIFICIAL INTELLIGENCE |
topic |
Ciencias Informáticas Evolutionary computation Voronoi diagrams Neural nets Algorithms ARTIFICIAL INTELLIGENCE |
dc.description.none.fl_txt_mv |
We present an evolutionary algorithm that evolves a population of local approximators in order to fit an unknown function. The evolutionary algorithm performs a simultaneous learning of simple local approximators together with the regions in which the local approximators are applied. By combining these simple local approximators, the domain is in fact partitioned in the Voronoi diagram that has as centers, the center points of the region in which each local approximator is efficient and useful. Both continuous and non-continuous approaches are considered. The algorithm seems promising in order to develop good neural networks for function approximation. Eje: Sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
We present an evolutionary algorithm that evolves a population of local approximators in order to fit an unknown function. The evolutionary algorithm performs a simultaneous learning of simple local approximators together with the regions in which the local approximators are applied. By combining these simple local approximators, the domain is in fact partitioned in the Voronoi diagram that has as centers, the center points of the region in which each local approximator is efficient and useful. Both continuous and non-continuous approaches are considered. The algorithm seems promising in order to develop good neural networks for function approximation. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23402 |
url |
http://sedici.unlp.edu.ar/handle/10915/23402 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260121116213248 |
score |
13.13397 |