Evolution of neurocontrollers in changing environments
- Autores
- Apolloni, Javier; Kavka, Carlos; Roggero, Patricia
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- One of the most challenging aspects of the control theory is the design and implementation of controllers that can deal with changing environments, i. e., non stationary systems. Quite good progress has been made on this area by using different kind of models: neural networks, fuzzy systems, evolutionary algorithms, etc. Our approach consists in the use of a memory based evolutionary algorithm, specially designed in such a way that can be used to evolve neurocontrollers to be applied in changing environments. In this paper, we describe our architecture, and present an example of its application to a typical control problem.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
evolutionary algorithms
neural networks
control
Algorithms
Neural nets
Environments
ARTIFICIAL INTELLIGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23039
Ver los metadatos del registro completo
id |
SEDICI_2a9da41906858c765fbe00dc57228a25 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23039 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evolution of neurocontrollers in changing environmentsApolloni, JavierKavka, CarlosRoggero, PatriciaCiencias Informáticasevolutionary algorithmsneural networkscontrolAlgorithmsNeural netsEnvironmentsARTIFICIAL INTELLIGENCEOne of the most challenging aspects of the control theory is the design and implementation of controllers that can deal with changing environments, i. e., non stationary systems. Quite good progress has been made on this area by using different kind of models: neural networks, fuzzy systems, evolutionary algorithms, etc. Our approach consists in the use of a memory based evolutionary algorithm, specially designed in such a way that can be used to evolve neurocontrollers to be applied in changing environments. In this paper, we describe our architecture, and present an example of its application to a typical control problem.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf32-43http://sedici.unlp.edu.ar/handle/10915/23039enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:07Zoai:sedici.unlp.edu.ar:10915/23039Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:07.365SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evolution of neurocontrollers in changing environments |
title |
Evolution of neurocontrollers in changing environments |
spellingShingle |
Evolution of neurocontrollers in changing environments Apolloni, Javier Ciencias Informáticas evolutionary algorithms neural networks control Algorithms Neural nets Environments ARTIFICIAL INTELLIGENCE |
title_short |
Evolution of neurocontrollers in changing environments |
title_full |
Evolution of neurocontrollers in changing environments |
title_fullStr |
Evolution of neurocontrollers in changing environments |
title_full_unstemmed |
Evolution of neurocontrollers in changing environments |
title_sort |
Evolution of neurocontrollers in changing environments |
dc.creator.none.fl_str_mv |
Apolloni, Javier Kavka, Carlos Roggero, Patricia |
author |
Apolloni, Javier |
author_facet |
Apolloni, Javier Kavka, Carlos Roggero, Patricia |
author_role |
author |
author2 |
Kavka, Carlos Roggero, Patricia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas evolutionary algorithms neural networks control Algorithms Neural nets Environments ARTIFICIAL INTELLIGENCE |
topic |
Ciencias Informáticas evolutionary algorithms neural networks control Algorithms Neural nets Environments ARTIFICIAL INTELLIGENCE |
dc.description.none.fl_txt_mv |
One of the most challenging aspects of the control theory is the design and implementation of controllers that can deal with changing environments, i. e., non stationary systems. Quite good progress has been made on this area by using different kind of models: neural networks, fuzzy systems, evolutionary algorithms, etc. Our approach consists in the use of a memory based evolutionary algorithm, specially designed in such a way that can be used to evolve neurocontrollers to be applied in changing environments. In this paper, we describe our architecture, and present an example of its application to a typical control problem. Eje: Sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
One of the most challenging aspects of the control theory is the design and implementation of controllers that can deal with changing environments, i. e., non stationary systems. Quite good progress has been made on this area by using different kind of models: neural networks, fuzzy systems, evolutionary algorithms, etc. Our approach consists in the use of a memory based evolutionary algorithm, specially designed in such a way that can be used to evolve neurocontrollers to be applied in changing environments. In this paper, we describe our architecture, and present an example of its application to a typical control problem. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23039 |
url |
http://sedici.unlp.edu.ar/handle/10915/23039 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 32-43 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260119678615552 |
score |
13.13397 |