Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador

Autores
Coelho, Leandro dos Santos; Coelho, Antonio Augusto Rodrigues
Año de publicación
1997
Idioma
portugués
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper evaluates the application of the computational intelligence methodologies in a nonlinear process identification. The different intelligent methodologies utilized are evolutionary computation (hybrid genetic algorithms with simulated annealing) and artificial neural networks (feedforward and recurrent topologies). The simulations are realized in the identification of a turbogenerator mathematical model through a step signal, pseudo-random binary sequence, and white noise excitation signals. The performance of the techniques are presented and discussed.
Eje: Workshop sobre Aspectos Teoricos de la Inteligencia Artificial
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Process identification
evolutionary computation
genetic algorithms
simulated annnealing
artificial neural networks
Neural nets
Algorithms
Simulation
ARTIFICIAL INTELLIGENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23997

id SEDICI_144eeb3ebdf34cc345677cdc0d72f77f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23997
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-geradorCoelho, Leandro dos SantosCoelho, Antonio Augusto RodriguesCiencias InformáticasProcess identificationevolutionary computationgenetic algorithmssimulated annnealingartificial neural networksNeural netsAlgorithmsSimulationARTIFICIAL INTELLIGENCEThis paper evaluates the application of the computational intelligence methodologies in a nonlinear process identification. The different intelligent methodologies utilized are evolutionary computation (hybrid genetic algorithms with simulated annealing) and artificial neural networks (feedforward and recurrent topologies). The simulations are realized in the identification of a turbogenerator mathematical model through a step signal, pseudo-random binary sequence, and white noise excitation signals. The performance of the techniques are presented and discussed.Eje: Workshop sobre Aspectos Teoricos de la Inteligencia ArtificialRed de Universidades con Carreras en Informática (RedUNCI)1997info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23997info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)porreponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:41Zoai:sedici.unlp.edu.ar:10915/23997Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:41.345SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
title Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
spellingShingle Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
Coelho, Leandro dos Santos
Ciencias Informáticas
Process identification
evolutionary computation
genetic algorithms
simulated annnealing
artificial neural networks
Neural nets
Algorithms
Simulation
ARTIFICIAL INTELLIGENCE
title_short Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
title_full Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
title_fullStr Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
title_full_unstemmed Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
title_sort Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
dc.creator.none.fl_str_mv Coelho, Leandro dos Santos
Coelho, Antonio Augusto Rodrigues
author Coelho, Leandro dos Santos
author_facet Coelho, Leandro dos Santos
Coelho, Antonio Augusto Rodrigues
author_role author
author2 Coelho, Antonio Augusto Rodrigues
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Process identification
evolutionary computation
genetic algorithms
simulated annnealing
artificial neural networks
Neural nets
Algorithms
Simulation
ARTIFICIAL INTELLIGENCE
topic Ciencias Informáticas
Process identification
evolutionary computation
genetic algorithms
simulated annnealing
artificial neural networks
Neural nets
Algorithms
Simulation
ARTIFICIAL INTELLIGENCE
dc.description.none.fl_txt_mv This paper evaluates the application of the computational intelligence methodologies in a nonlinear process identification. The different intelligent methodologies utilized are evolutionary computation (hybrid genetic algorithms with simulated annealing) and artificial neural networks (feedforward and recurrent topologies). The simulations are realized in the identification of a turbogenerator mathematical model through a step signal, pseudo-random binary sequence, and white noise excitation signals. The performance of the techniques are presented and discussed.
Eje: Workshop sobre Aspectos Teoricos de la Inteligencia Artificial
Red de Universidades con Carreras en Informática (RedUNCI)
description This paper evaluates the application of the computational intelligence methodologies in a nonlinear process identification. The different intelligent methodologies utilized are evolutionary computation (hybrid genetic algorithms with simulated annealing) and artificial neural networks (feedforward and recurrent topologies). The simulations are realized in the identification of a turbogenerator mathematical model through a step signal, pseudo-random binary sequence, and white noise excitation signals. The performance of the techniques are presented and discussed.
publishDate 1997
dc.date.none.fl_str_mv 1997
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23997
url http://sedici.unlp.edu.ar/handle/10915/23997
dc.language.none.fl_str_mv por
language por
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615816237023232
score 13.070432