Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
- Autores
- Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups.
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Venezuela
Fil: Ospina, Raydonal. Universidade Federal de Pernambuco; Brasil
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil - Materia
-
TIME SERIES
INFORMATION THEORY QUANTIFIERS
HANDWRITTEN SIGNATURES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46909
Ver los metadatos del registro completo
id |
CONICETDig_a76449ef7250437c24064e65c1429b11 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46909 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory QuantifiersRosso, Osvaldo AníbalOspina, RaydonalFrery, Alejandro CésarTIME SERIESINFORMATION THEORY QUANTIFIERSHANDWRITTEN SIGNATUREShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups.Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; VenezuelaFil: Ospina, Raydonal. Universidade Federal de Pernambuco; BrasilFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilPublic Library of Science2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46909Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César; Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers; Public Library of Science; Plos One; 11; 12; 12-2016; 1-43; e01668681932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0166868info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166868info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131934/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:31Zoai:ri.conicet.gov.ar:11336/46909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:31.876CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers |
title |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers |
spellingShingle |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers Rosso, Osvaldo Aníbal TIME SERIES INFORMATION THEORY QUANTIFIERS HANDWRITTEN SIGNATURES |
title_short |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers |
title_full |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers |
title_fullStr |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers |
title_full_unstemmed |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers |
title_sort |
Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers |
dc.creator.none.fl_str_mv |
Rosso, Osvaldo Aníbal Ospina, Raydonal Frery, Alejandro César |
author |
Rosso, Osvaldo Aníbal |
author_facet |
Rosso, Osvaldo Aníbal Ospina, Raydonal Frery, Alejandro César |
author_role |
author |
author2 |
Ospina, Raydonal Frery, Alejandro César |
author2_role |
author author |
dc.subject.none.fl_str_mv |
TIME SERIES INFORMATION THEORY QUANTIFIERS HANDWRITTEN SIGNATURES |
topic |
TIME SERIES INFORMATION THEORY QUANTIFIERS HANDWRITTEN SIGNATURES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups. Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Venezuela Fil: Ospina, Raydonal. Universidade Federal de Pernambuco; Brasil Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil |
description |
We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46909 Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César; Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers; Public Library of Science; Plos One; 11; 12; 12-2016; 1-43; e0166868 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46909 |
identifier_str_mv |
Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César; Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers; Public Library of Science; Plos One; 11; 12; 12-2016; 1-43; e0166868 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0166868 info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166868 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131934/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613610890854400 |
score |
13.070432 |