Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers

Autores
Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups.
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Venezuela
Fil: Ospina, Raydonal. Universidade Federal de Pernambuco; Brasil
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil
Materia
TIME SERIES
INFORMATION THEORY QUANTIFIERS
HANDWRITTEN SIGNATURES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/46909

id CONICETDig_a76449ef7250437c24064e65c1429b11
oai_identifier_str oai:ri.conicet.gov.ar:11336/46909
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classification and Verification of Handwritten Signatures with Time Causal Information Theory QuantifiersRosso, Osvaldo AníbalOspina, RaydonalFrery, Alejandro CésarTIME SERIESINFORMATION THEORY QUANTIFIERSHANDWRITTEN SIGNATUREShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups.Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; VenezuelaFil: Ospina, Raydonal. Universidade Federal de Pernambuco; BrasilFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilPublic Library of Science2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46909Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César; Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers; Public Library of Science; Plos One; 11; 12; 12-2016; 1-43; e01668681932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0166868info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166868info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131934/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:31Zoai:ri.conicet.gov.ar:11336/46909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:31.876CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
title Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
spellingShingle Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
Rosso, Osvaldo Aníbal
TIME SERIES
INFORMATION THEORY QUANTIFIERS
HANDWRITTEN SIGNATURES
title_short Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
title_full Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
title_fullStr Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
title_full_unstemmed Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
title_sort Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers
dc.creator.none.fl_str_mv Rosso, Osvaldo Aníbal
Ospina, Raydonal
Frery, Alejandro César
author Rosso, Osvaldo Aníbal
author_facet Rosso, Osvaldo Aníbal
Ospina, Raydonal
Frery, Alejandro César
author_role author
author2 Ospina, Raydonal
Frery, Alejandro César
author2_role author
author
dc.subject.none.fl_str_mv TIME SERIES
INFORMATION THEORY QUANTIFIERS
HANDWRITTEN SIGNATURES
topic TIME SERIES
INFORMATION THEORY QUANTIFIERS
HANDWRITTEN SIGNATURES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups.
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Venezuela
Fil: Ospina, Raydonal. Universidade Federal de Pernambuco; Brasil
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil
description We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the trainingsample, and we also use it to classify the signatures into meaningful groups.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/46909
Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César; Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers; Public Library of Science; Plos One; 11; 12; 12-2016; 1-43; e0166868
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/46909
identifier_str_mv Rosso, Osvaldo Aníbal; Ospina, Raydonal; Frery, Alejandro César; Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers; Public Library of Science; Plos One; 11; 12; 12-2016; 1-43; e0166868
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0166868
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166868
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131934/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613610890854400
score 13.070432