Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
- Autores
- Granitto, Pablo Miguel; Navone, Hugo Daniel; Verdes, Pablo Fabián; Ceccatto, Hermenegildo Alejandro
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
ensemble methods
kernel methods
petroleum industry
Neural nets
ARTIFICIAL INTELLIGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23416
Ver los metadatos del registro completo
id |
SEDICI_321128532bafb28be7fe8e333ca00d70 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23416 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methodsGranitto, Pablo MiguelNavone, Hugo DanielVerdes, Pablo FabiánCeccatto, Hermenegildo AlejandroCiencias Informáticasensemble methodskernel methodspetroleum industryNeural netsARTIFICIAL INTELLIGENCEOil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23416enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:58:51Zoai:sedici.unlp.edu.ar:10915/23416Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:58:51.979SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods |
title |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods |
spellingShingle |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods Granitto, Pablo Miguel Ciencias Informáticas ensemble methods kernel methods petroleum industry Neural nets ARTIFICIAL INTELLIGENCE |
title_short |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods |
title_full |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods |
title_fullStr |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods |
title_full_unstemmed |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods |
title_sort |
Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods |
dc.creator.none.fl_str_mv |
Granitto, Pablo Miguel Navone, Hugo Daniel Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author |
Granitto, Pablo Miguel |
author_facet |
Granitto, Pablo Miguel Navone, Hugo Daniel Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author_role |
author |
author2 |
Navone, Hugo Daniel Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ensemble methods kernel methods petroleum industry Neural nets ARTIFICIAL INTELLIGENCE |
topic |
Ciencias Informáticas ensemble methods kernel methods petroleum industry Neural nets ARTIFICIAL INTELLIGENCE |
dc.description.none.fl_txt_mv |
Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task. Eje: Sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23416 |
url |
http://sedici.unlp.edu.ar/handle/10915/23416 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842903781627396096 |
score |
12.993085 |