Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods

Autores
Granitto, Pablo Miguel; Navone, Hugo Daniel; Verdes, Pablo Fabián; Ceccatto, Hermenegildo Alejandro
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
ensemble methods
kernel methods
petroleum industry
Neural nets
ARTIFICIAL INTELLIGENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23416

id SEDICI_321128532bafb28be7fe8e333ca00d70
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23416
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methodsGranitto, Pablo MiguelNavone, Hugo DanielVerdes, Pablo FabiánCeccatto, Hermenegildo AlejandroCiencias Informáticasensemble methodskernel methodspetroleum industryNeural netsARTIFICIAL INTELLIGENCEOil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23416enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:58:51Zoai:sedici.unlp.edu.ar:10915/23416Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:58:51.979SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
title Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
spellingShingle Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
Granitto, Pablo Miguel
Ciencias Informáticas
ensemble methods
kernel methods
petroleum industry
Neural nets
ARTIFICIAL INTELLIGENCE
title_short Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
title_full Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
title_fullStr Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
title_full_unstemmed Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
title_sort Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods
dc.creator.none.fl_str_mv Granitto, Pablo Miguel
Navone, Hugo Daniel
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author Granitto, Pablo Miguel
author_facet Granitto, Pablo Miguel
Navone, Hugo Daniel
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author_role author
author2 Navone, Hugo Daniel
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
ensemble methods
kernel methods
petroleum industry
Neural nets
ARTIFICIAL INTELLIGENCE
topic Ciencias Informáticas
ensemble methods
kernel methods
petroleum industry
Neural nets
ARTIFICIAL INTELLIGENCE
dc.description.none.fl_txt_mv Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task.
publishDate 2001
dc.date.none.fl_str_mv 2001-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23416
url http://sedici.unlp.edu.ar/handle/10915/23416
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842903781627396096
score 12.993085