Aggregation Algorithms for Neural Networks Ensemble Construction

Autores
Granitto, Pablo Miguel; Verdes, Pablo Fabián; Navone, Hugo Daniel; Ceccatto, Hermenegildo Alejandro
Año de publicación
2002
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
How to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
algorithms
neural networks aggregation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/183217

id SEDICI_30e85c1d544bc3d9add2abdad7c4b06f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/183217
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Aggregation Algorithms for Neural Networks Ensemble ConstructionGranitto, Pablo MiguelVerdes, Pablo FabiánNavone, Hugo DanielCeccatto, Hermenegildo AlejandroCiencias Informáticasalgorithmsneural networks aggregationHow to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks.Sociedad Argentina de Informática e Investigación Operativa2002info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf175-184http://sedici.unlp.edu.ar/handle/10915/183217enginfo:eu-repo/semantics/altIdentifier/issn/1660-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:41:53Zoai:sedici.unlp.edu.ar:10915/183217Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:41:54.183SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Aggregation Algorithms for Neural Networks Ensemble Construction
title Aggregation Algorithms for Neural Networks Ensemble Construction
spellingShingle Aggregation Algorithms for Neural Networks Ensemble Construction
Granitto, Pablo Miguel
Ciencias Informáticas
algorithms
neural networks aggregation
title_short Aggregation Algorithms for Neural Networks Ensemble Construction
title_full Aggregation Algorithms for Neural Networks Ensemble Construction
title_fullStr Aggregation Algorithms for Neural Networks Ensemble Construction
title_full_unstemmed Aggregation Algorithms for Neural Networks Ensemble Construction
title_sort Aggregation Algorithms for Neural Networks Ensemble Construction
dc.creator.none.fl_str_mv Granitto, Pablo Miguel
Verdes, Pablo Fabián
Navone, Hugo Daniel
Ceccatto, Hermenegildo Alejandro
author Granitto, Pablo Miguel
author_facet Granitto, Pablo Miguel
Verdes, Pablo Fabián
Navone, Hugo Daniel
Ceccatto, Hermenegildo Alejandro
author_role author
author2 Verdes, Pablo Fabián
Navone, Hugo Daniel
Ceccatto, Hermenegildo Alejandro
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
algorithms
neural networks aggregation
topic Ciencias Informáticas
algorithms
neural networks aggregation
dc.description.none.fl_txt_mv How to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks.
Sociedad Argentina de Informática e Investigación Operativa
description How to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/183217
url http://sedici.unlp.edu.ar/handle/10915/183217
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1660-1079
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
175-184
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064427176034304
score 13.22299