Aggregation Algorithms for Neural Networks Ensemble Construction
- Autores
- Granitto, Pablo Miguel; Verdes, Pablo Fabián; Navone, Hugo Daniel; Ceccatto, Hermenegildo Alejandro
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- How to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
algorithms
neural networks aggregation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/183217
Ver los metadatos del registro completo
id |
SEDICI_30e85c1d544bc3d9add2abdad7c4b06f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/183217 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Aggregation Algorithms for Neural Networks Ensemble ConstructionGranitto, Pablo MiguelVerdes, Pablo FabiánNavone, Hugo DanielCeccatto, Hermenegildo AlejandroCiencias Informáticasalgorithmsneural networks aggregationHow to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks.Sociedad Argentina de Informática e Investigación Operativa2002info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf175-184http://sedici.unlp.edu.ar/handle/10915/183217enginfo:eu-repo/semantics/altIdentifier/issn/1660-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:41:53Zoai:sedici.unlp.edu.ar:10915/183217Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:41:54.183SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Aggregation Algorithms for Neural Networks Ensemble Construction |
title |
Aggregation Algorithms for Neural Networks Ensemble Construction |
spellingShingle |
Aggregation Algorithms for Neural Networks Ensemble Construction Granitto, Pablo Miguel Ciencias Informáticas algorithms neural networks aggregation |
title_short |
Aggregation Algorithms for Neural Networks Ensemble Construction |
title_full |
Aggregation Algorithms for Neural Networks Ensemble Construction |
title_fullStr |
Aggregation Algorithms for Neural Networks Ensemble Construction |
title_full_unstemmed |
Aggregation Algorithms for Neural Networks Ensemble Construction |
title_sort |
Aggregation Algorithms for Neural Networks Ensemble Construction |
dc.creator.none.fl_str_mv |
Granitto, Pablo Miguel Verdes, Pablo Fabián Navone, Hugo Daniel Ceccatto, Hermenegildo Alejandro |
author |
Granitto, Pablo Miguel |
author_facet |
Granitto, Pablo Miguel Verdes, Pablo Fabián Navone, Hugo Daniel Ceccatto, Hermenegildo Alejandro |
author_role |
author |
author2 |
Verdes, Pablo Fabián Navone, Hugo Daniel Ceccatto, Hermenegildo Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas algorithms neural networks aggregation |
topic |
Ciencias Informáticas algorithms neural networks aggregation |
dc.description.none.fl_txt_mv |
How to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks. Sociedad Argentina de Informática e Investigación Operativa |
description |
How to generate and aggregate base learners to have optimal ensemble generalization capabilities is an important questions in building composite regression/classification machines. We present here an evaluation of several algorithms for artificial neural networks aggregation in the regression settings, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We show that one can cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a performance improvement on the standard statistical databases used as benchmarks. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/183217 |
url |
http://sedici.unlp.edu.ar/handle/10915/183217 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1660-1079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 175-184 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064427176034304 |
score |
13.22299 |