Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile

Autores
Moreno Salas, Lucila; Espinoza Carniglia, Mario; Lizama Schmeisser, Nicol; Torres, Luis Gonzalo; Silva de la Fuente, María Carolina; Lareschi, Marcela; González Acuña, Daniel
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Rattus rattus is a widely distributed, invasive species that presents an important role in disease transmission, either directly or through vector arthropods such as fleas. These black rats can transmit a wide variety of pathogens, including bacteria of the genus Bartonella, which can cause diseases in humans and animals. In Chile, no data are available identifying fleas from synanthropic rodents as Bartonella vectors. The aim of this study was to investigate the prevalence of Bartonella spp. in the fleas of R. rattus in areas with different climate conditions and featuring different human population densities. Methods: In all, 174 fleas collected from 261 R. rattus captured from 30 localities with different human densities (cities, villages, and wild areas) across five hydrographic zones of Chile (hyper-arid, arid, semi-arid, sub-humid, and hyper-humid) were examined. Bartonella spp. presence was determined through polymerase chain reaction, using gltA and rpoB genes, which were concatenated to perform a similarity analysis with BLAST and phylogenetic analysis. Results: Overall, 15 fleas species were identified; Bartonella gltA and rpoB fragments were detected in 21.2% (37/174) and 19.5% (34/174) of fleas, respectively. A total of 10 of the 15 fleas species found were positive for Bartonella DNA. Leptopsylla segnis was the most commonly collected flea species (n = 55), and it also presented a high prevalence of Bartonella DNA (P% = 34.5%). The highest numbers of fleas of this species were collected in villages of the arid zone. There were no seasonal differences in the prevalence of Bartonella DNA. The presence of Bartonella DNA in fleas was recorded in all hydrographic areas, and the arid zone presented the highest prevalence of this species. Regarding areas with different human densities, the highest prevalence was noted in the villages (34.8% gltA and 31.8% rpoB), followed by cities (14.8% gltA and 11.1% rpoB) and wild areas (7.4% gltA and 14.8% rpoB). The BLAST analysis showed a high similitude (>96%) with four uncharacterized Bartonella genotypes and with two species with zoonotic potential: B. mastomydis and B. tribocorum. The phylogenetic analysis showed a close relationship with B. elizabethae and B. tribocorum. This is the first study to provide evidence of the presence of Bartonella in fleas of R. rattus in Chile, indicating that the villages and arid zone correspond to areas with higher infection risk.
Centro de Estudios Parasitológicos y de Vectores
Materia
Ciencias Veterinarias
infection
infectious diseases
molecular epidemiology
fleas
rodent
Chile
Anthropogenic effect
Public health
Diseases
Ectoparasites
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/160925

id SEDICI_3088f72db044c61b49b2aa8878ca1aa1
oai_identifier_str oai:sedici.unlp.edu.ar:10915/160925
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in ChileMoreno Salas, LucilaEspinoza Carniglia, MarioLizama Schmeisser, NicolTorres, Luis GonzaloSilva de la Fuente, María CarolinaLareschi, MarcelaGonzález Acuña, DanielCiencias Veterinariasinfectioninfectious diseasesmolecular epidemiologyfleasrodentChileAnthropogenic effectPublic healthDiseasesEctoparasitesBackground: Rattus rattus is a widely distributed, invasive species that presents an important role in disease transmission, either directly or through vector arthropods such as fleas. These black rats can transmit a wide variety of pathogens, including bacteria of the genus Bartonella, which can cause diseases in humans and animals. In Chile, no data are available identifying fleas from synanthropic rodents as Bartonella vectors. The aim of this study was to investigate the prevalence of Bartonella spp. in the fleas of R. rattus in areas with different climate conditions and featuring different human population densities. Methods: In all, 174 fleas collected from 261 R. rattus captured from 30 localities with different human densities (cities, villages, and wild areas) across five hydrographic zones of Chile (hyper-arid, arid, semi-arid, sub-humid, and hyper-humid) were examined. Bartonella spp. presence was determined through polymerase chain reaction, using gltA and rpoB genes, which were concatenated to perform a similarity analysis with BLAST and phylogenetic analysis. Results: Overall, 15 fleas species were identified; Bartonella gltA and rpoB fragments were detected in 21.2% (37/174) and 19.5% (34/174) of fleas, respectively. A total of 10 of the 15 fleas species found were positive for Bartonella DNA. Leptopsylla segnis was the most commonly collected flea species (n = 55), and it also presented a high prevalence of Bartonella DNA (P% = 34.5%). The highest numbers of fleas of this species were collected in villages of the arid zone. There were no seasonal differences in the prevalence of Bartonella DNA. The presence of Bartonella DNA in fleas was recorded in all hydrographic areas, and the arid zone presented the highest prevalence of this species. Regarding areas with different human densities, the highest prevalence was noted in the villages (34.8% gltA and 31.8% rpoB), followed by cities (14.8% gltA and 11.1% rpoB) and wild areas (7.4% gltA and 14.8% rpoB). The BLAST analysis showed a high similitude (>96%) with four uncharacterized Bartonella genotypes and with two species with zoonotic potential: B. mastomydis and B. tribocorum. The phylogenetic analysis showed a close relationship with B. elizabethae and B. tribocorum. This is the first study to provide evidence of the presence of Bartonella in fleas of R. rattus in Chile, indicating that the villages and arid zone correspond to areas with higher infection risk.Centro de Estudios Parasitológicos y de Vectores2019-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/160925enginfo:eu-repo/semantics/altIdentifier/issn/2167-8359info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.7371info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:42:10Zoai:sedici.unlp.edu.ar:10915/160925Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:42:11.269SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
title Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
spellingShingle Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
Moreno Salas, Lucila
Ciencias Veterinarias
infection
infectious diseases
molecular epidemiology
fleas
rodent
Chile
Anthropogenic effect
Public health
Diseases
Ectoparasites
title_short Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
title_full Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
title_fullStr Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
title_full_unstemmed Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
title_sort Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
dc.creator.none.fl_str_mv Moreno Salas, Lucila
Espinoza Carniglia, Mario
Lizama Schmeisser, Nicol
Torres, Luis Gonzalo
Silva de la Fuente, María Carolina
Lareschi, Marcela
González Acuña, Daniel
author Moreno Salas, Lucila
author_facet Moreno Salas, Lucila
Espinoza Carniglia, Mario
Lizama Schmeisser, Nicol
Torres, Luis Gonzalo
Silva de la Fuente, María Carolina
Lareschi, Marcela
González Acuña, Daniel
author_role author
author2 Espinoza Carniglia, Mario
Lizama Schmeisser, Nicol
Torres, Luis Gonzalo
Silva de la Fuente, María Carolina
Lareschi, Marcela
González Acuña, Daniel
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Veterinarias
infection
infectious diseases
molecular epidemiology
fleas
rodent
Chile
Anthropogenic effect
Public health
Diseases
Ectoparasites
topic Ciencias Veterinarias
infection
infectious diseases
molecular epidemiology
fleas
rodent
Chile
Anthropogenic effect
Public health
Diseases
Ectoparasites
dc.description.none.fl_txt_mv Background: Rattus rattus is a widely distributed, invasive species that presents an important role in disease transmission, either directly or through vector arthropods such as fleas. These black rats can transmit a wide variety of pathogens, including bacteria of the genus Bartonella, which can cause diseases in humans and animals. In Chile, no data are available identifying fleas from synanthropic rodents as Bartonella vectors. The aim of this study was to investigate the prevalence of Bartonella spp. in the fleas of R. rattus in areas with different climate conditions and featuring different human population densities. Methods: In all, 174 fleas collected from 261 R. rattus captured from 30 localities with different human densities (cities, villages, and wild areas) across five hydrographic zones of Chile (hyper-arid, arid, semi-arid, sub-humid, and hyper-humid) were examined. Bartonella spp. presence was determined through polymerase chain reaction, using gltA and rpoB genes, which were concatenated to perform a similarity analysis with BLAST and phylogenetic analysis. Results: Overall, 15 fleas species were identified; Bartonella gltA and rpoB fragments were detected in 21.2% (37/174) and 19.5% (34/174) of fleas, respectively. A total of 10 of the 15 fleas species found were positive for Bartonella DNA. Leptopsylla segnis was the most commonly collected flea species (n = 55), and it also presented a high prevalence of Bartonella DNA (P% = 34.5%). The highest numbers of fleas of this species were collected in villages of the arid zone. There were no seasonal differences in the prevalence of Bartonella DNA. The presence of Bartonella DNA in fleas was recorded in all hydrographic areas, and the arid zone presented the highest prevalence of this species. Regarding areas with different human densities, the highest prevalence was noted in the villages (34.8% gltA and 31.8% rpoB), followed by cities (14.8% gltA and 11.1% rpoB) and wild areas (7.4% gltA and 14.8% rpoB). The BLAST analysis showed a high similitude (>96%) with four uncharacterized Bartonella genotypes and with two species with zoonotic potential: B. mastomydis and B. tribocorum. The phylogenetic analysis showed a close relationship with B. elizabethae and B. tribocorum. This is the first study to provide evidence of the presence of Bartonella in fleas of R. rattus in Chile, indicating that the villages and arid zone correspond to areas with higher infection risk.
Centro de Estudios Parasitológicos y de Vectores
description Background: Rattus rattus is a widely distributed, invasive species that presents an important role in disease transmission, either directly or through vector arthropods such as fleas. These black rats can transmit a wide variety of pathogens, including bacteria of the genus Bartonella, which can cause diseases in humans and animals. In Chile, no data are available identifying fleas from synanthropic rodents as Bartonella vectors. The aim of this study was to investigate the prevalence of Bartonella spp. in the fleas of R. rattus in areas with different climate conditions and featuring different human population densities. Methods: In all, 174 fleas collected from 261 R. rattus captured from 30 localities with different human densities (cities, villages, and wild areas) across five hydrographic zones of Chile (hyper-arid, arid, semi-arid, sub-humid, and hyper-humid) were examined. Bartonella spp. presence was determined through polymerase chain reaction, using gltA and rpoB genes, which were concatenated to perform a similarity analysis with BLAST and phylogenetic analysis. Results: Overall, 15 fleas species were identified; Bartonella gltA and rpoB fragments were detected in 21.2% (37/174) and 19.5% (34/174) of fleas, respectively. A total of 10 of the 15 fleas species found were positive for Bartonella DNA. Leptopsylla segnis was the most commonly collected flea species (n = 55), and it also presented a high prevalence of Bartonella DNA (P% = 34.5%). The highest numbers of fleas of this species were collected in villages of the arid zone. There were no seasonal differences in the prevalence of Bartonella DNA. The presence of Bartonella DNA in fleas was recorded in all hydrographic areas, and the arid zone presented the highest prevalence of this species. Regarding areas with different human densities, the highest prevalence was noted in the villages (34.8% gltA and 31.8% rpoB), followed by cities (14.8% gltA and 11.1% rpoB) and wild areas (7.4% gltA and 14.8% rpoB). The BLAST analysis showed a high similitude (>96%) with four uncharacterized Bartonella genotypes and with two species with zoonotic potential: B. mastomydis and B. tribocorum. The phylogenetic analysis showed a close relationship with B. elizabethae and B. tribocorum. This is the first study to provide evidence of the presence of Bartonella in fleas of R. rattus in Chile, indicating that the villages and arid zone correspond to areas with higher infection risk.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/160925
url http://sedici.unlp.edu.ar/handle/10915/160925
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2167-8359
info:eu-repo/semantics/altIdentifier/doi/10.7717/peerj.7371
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616292170989568
score 13.070432