MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence
- Autores
- Pérez, Ernesto Rafael; Angelina, Emilio; Gómez Chávez, José Leonardo; Conti, Germán; Torres, Ramón; Peruchena, Nélida
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The MammoInsight project aims to revolutionize the interpretation of digital mammographic images through the integration of artificial intelligence (AI) models. Facing the challenge of early and accurate breast cancer detection, this web platform seeks to overcome the subjectivity and heavy workload of specialists, significantly improving survival rates and accelerating the diagnostic process. Through the development and implementation of AI modules for the automatic categorization of breast density, the classification of mammograms, and the detection and segmentation of anomalies, this represents a crucial advancement in the diagnosis of breast pathologies and has a positive impact on the field of radiology and public health.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Artificial Intelligence
Breast Cancer Diagnosis
Mammographic Images
Health Technology
Radiology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/177128
Ver los metadatos del registro completo
id |
SEDICI_2f19395b82c49ebbf660badbae3f0fbb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/177128 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial IntelligencePérez, Ernesto RafaelAngelina, EmilioGómez Chávez, José LeonardoConti, GermánTorres, RamónPeruchena, NélidaCiencias InformáticasArtificial IntelligenceBreast Cancer DiagnosisMammographic ImagesHealth TechnologyRadiologyThe MammoInsight project aims to revolutionize the interpretation of digital mammographic images through the integration of artificial intelligence (AI) models. Facing the challenge of early and accurate breast cancer detection, this web platform seeks to overcome the subjectivity and heavy workload of specialists, significantly improving survival rates and accelerating the diagnostic process. Through the development and implementation of AI modules for the automatic categorization of breast density, the classification of mammograms, and the detection and segmentation of anomalies, this represents a crucial advancement in the diagnosis of breast pathologies and has a positive impact on the field of radiology and public health.Sociedad Argentina de Informática e Investigación Operativa2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf102-105http://sedici.unlp.edu.ar/handle/10915/177128enginfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/18555info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:50:35Zoai:sedici.unlp.edu.ar:10915/177128Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:50:35.564SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence |
title |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence |
spellingShingle |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence Pérez, Ernesto Rafael Ciencias Informáticas Artificial Intelligence Breast Cancer Diagnosis Mammographic Images Health Technology Radiology |
title_short |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence |
title_full |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence |
title_fullStr |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence |
title_full_unstemmed |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence |
title_sort |
MammoInsight: Innovating Early Breast Cancer Detection through Artificial Intelligence |
dc.creator.none.fl_str_mv |
Pérez, Ernesto Rafael Angelina, Emilio Gómez Chávez, José Leonardo Conti, Germán Torres, Ramón Peruchena, Nélida |
author |
Pérez, Ernesto Rafael |
author_facet |
Pérez, Ernesto Rafael Angelina, Emilio Gómez Chávez, José Leonardo Conti, Germán Torres, Ramón Peruchena, Nélida |
author_role |
author |
author2 |
Angelina, Emilio Gómez Chávez, José Leonardo Conti, Germán Torres, Ramón Peruchena, Nélida |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Artificial Intelligence Breast Cancer Diagnosis Mammographic Images Health Technology Radiology |
topic |
Ciencias Informáticas Artificial Intelligence Breast Cancer Diagnosis Mammographic Images Health Technology Radiology |
dc.description.none.fl_txt_mv |
The MammoInsight project aims to revolutionize the interpretation of digital mammographic images through the integration of artificial intelligence (AI) models. Facing the challenge of early and accurate breast cancer detection, this web platform seeks to overcome the subjectivity and heavy workload of specialists, significantly improving survival rates and accelerating the diagnostic process. Through the development and implementation of AI modules for the automatic categorization of breast density, the classification of mammograms, and the detection and segmentation of anomalies, this represents a crucial advancement in the diagnosis of breast pathologies and has a positive impact on the field of radiology and public health. Sociedad Argentina de Informática e Investigación Operativa |
description |
The MammoInsight project aims to revolutionize the interpretation of digital mammographic images through the integration of artificial intelligence (AI) models. Facing the challenge of early and accurate breast cancer detection, this web platform seeks to overcome the subjectivity and heavy workload of specialists, significantly improving survival rates and accelerating the diagnostic process. Through the development and implementation of AI modules for the automatic categorization of breast density, the classification of mammograms, and the detection and segmentation of anomalies, this represents a crucial advancement in the diagnosis of breast pathologies and has a positive impact on the field of radiology and public health. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/177128 |
url |
http://sedici.unlp.edu.ar/handle/10915/177128 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/18555 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 102-105 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904750880718848 |
score |
12.993085 |