Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence
- Autores
- Zapico, Adriana Maria; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In general, non-destructive evaluation is applied to detect and localize structural faults using a signal with a wavelength smaller than the detected fault. But the method requires analyzing the object in numerous small sections to detect the damage. Non-invasive diagnosis methods for fault detection are used in different industrial sectors. In this work, the main focus is on global fault detection for structural mechanical components such as a bonded beam using artificial intelligence, i.e., neural nets. Therefore, the fault detection procedure requires only a global measurement in the structural component in operational conditions. An experimental setup using two aluminum beams bonded with an adhesive was used to simulate a bonded joint. Different sizes of adhesive surface simulate faults in the original adhesive joint. Thereafter, resonance frequency shifts in the Frequency Response Functions (FRFs) were used to detect structural faults. Damage in structures causes small changes in the structural resonances. Then, the FRFs were used as an input into an artificial supervised neural network. This work considers global non-destructive tests focused only on the soundness estimation of the system. The neural network involved is a supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm, which classifies the beams in four clusters. The classification consists in beam damaged or not damaged. If the beam is damaged the intensity of the fault is established.
Fil: Zapico, Adriana Maria. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Molisani Yolitti, Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina
Fil: Del Real, J. C.. Universidad Pontificia Comillas de Madrid; España
Fil: Ballesteros, Yamila. Universidad Pontificia Comillas de Madrid; España - Materia
-
BONDED JOINTS
FAULT DIAGNOSIS
FREQUENCY RESPONSE FUNCTIONS (FRFS)
NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/193492
Ver los metadatos del registro completo
| id |
CONICETDig_b90559521a1c6a454e03df26881924fe |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/193492 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Global Fault Detection in Adhesively Bonded Joints Using Artificial IntelligenceZapico, Adriana MariaMolisani Yolitti, LeonardoDel Real, J. C.Ballesteros, YamilaBONDED JOINTSFAULT DIAGNOSISFREQUENCY RESPONSE FUNCTIONS (FRFS)NEURAL NETWORKShttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2In general, non-destructive evaluation is applied to detect and localize structural faults using a signal with a wavelength smaller than the detected fault. But the method requires analyzing the object in numerous small sections to detect the damage. Non-invasive diagnosis methods for fault detection are used in different industrial sectors. In this work, the main focus is on global fault detection for structural mechanical components such as a bonded beam using artificial intelligence, i.e., neural nets. Therefore, the fault detection procedure requires only a global measurement in the structural component in operational conditions. An experimental setup using two aluminum beams bonded with an adhesive was used to simulate a bonded joint. Different sizes of adhesive surface simulate faults in the original adhesive joint. Thereafter, resonance frequency shifts in the Frequency Response Functions (FRFs) were used to detect structural faults. Damage in structures causes small changes in the structural resonances. Then, the FRFs were used as an input into an artificial supervised neural network. This work considers global non-destructive tests focused only on the soundness estimation of the system. The neural network involved is a supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm, which classifies the beams in four clusters. The classification consists in beam damaged or not damaged. If the beam is damaged the intensity of the fault is established.Fil: Zapico, Adriana Maria. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Molisani Yolitti, Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; ArgentinaFil: Del Real, J. C.. Universidad Pontificia Comillas de Madrid; EspañaFil: Ballesteros, Yamila. Universidad Pontificia Comillas de Madrid; EspañaBrill Academic Publishers2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/193492Zapico, Adriana Maria; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila; Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence; Brill Academic Publishers; Journal of Adhesion Science and Technology; 25; 18; 8-2011; 2435-24430169-42431568-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1163/016942411X580126info:eu-repo/semantics/altIdentifier/doi/10.1163/016942411X580126info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:19:54Zoai:ri.conicet.gov.ar:11336/193492instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:19:54.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence |
| title |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence |
| spellingShingle |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence Zapico, Adriana Maria BONDED JOINTS FAULT DIAGNOSIS FREQUENCY RESPONSE FUNCTIONS (FRFS) NEURAL NETWORKS |
| title_short |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence |
| title_full |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence |
| title_fullStr |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence |
| title_full_unstemmed |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence |
| title_sort |
Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence |
| dc.creator.none.fl_str_mv |
Zapico, Adriana Maria Molisani Yolitti, Leonardo Del Real, J. C. Ballesteros, Yamila |
| author |
Zapico, Adriana Maria |
| author_facet |
Zapico, Adriana Maria Molisani Yolitti, Leonardo Del Real, J. C. Ballesteros, Yamila |
| author_role |
author |
| author2 |
Molisani Yolitti, Leonardo Del Real, J. C. Ballesteros, Yamila |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
BONDED JOINTS FAULT DIAGNOSIS FREQUENCY RESPONSE FUNCTIONS (FRFS) NEURAL NETWORKS |
| topic |
BONDED JOINTS FAULT DIAGNOSIS FREQUENCY RESPONSE FUNCTIONS (FRFS) NEURAL NETWORKS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
In general, non-destructive evaluation is applied to detect and localize structural faults using a signal with a wavelength smaller than the detected fault. But the method requires analyzing the object in numerous small sections to detect the damage. Non-invasive diagnosis methods for fault detection are used in different industrial sectors. In this work, the main focus is on global fault detection for structural mechanical components such as a bonded beam using artificial intelligence, i.e., neural nets. Therefore, the fault detection procedure requires only a global measurement in the structural component in operational conditions. An experimental setup using two aluminum beams bonded with an adhesive was used to simulate a bonded joint. Different sizes of adhesive surface simulate faults in the original adhesive joint. Thereafter, resonance frequency shifts in the Frequency Response Functions (FRFs) were used to detect structural faults. Damage in structures causes small changes in the structural resonances. Then, the FRFs were used as an input into an artificial supervised neural network. This work considers global non-destructive tests focused only on the soundness estimation of the system. The neural network involved is a supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm, which classifies the beams in four clusters. The classification consists in beam damaged or not damaged. If the beam is damaged the intensity of the fault is established. Fil: Zapico, Adriana Maria. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Molisani Yolitti, Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina Fil: Del Real, J. C.. Universidad Pontificia Comillas de Madrid; España Fil: Ballesteros, Yamila. Universidad Pontificia Comillas de Madrid; España |
| description |
In general, non-destructive evaluation is applied to detect and localize structural faults using a signal with a wavelength smaller than the detected fault. But the method requires analyzing the object in numerous small sections to detect the damage. Non-invasive diagnosis methods for fault detection are used in different industrial sectors. In this work, the main focus is on global fault detection for structural mechanical components such as a bonded beam using artificial intelligence, i.e., neural nets. Therefore, the fault detection procedure requires only a global measurement in the structural component in operational conditions. An experimental setup using two aluminum beams bonded with an adhesive was used to simulate a bonded joint. Different sizes of adhesive surface simulate faults in the original adhesive joint. Thereafter, resonance frequency shifts in the Frequency Response Functions (FRFs) were used to detect structural faults. Damage in structures causes small changes in the structural resonances. Then, the FRFs were used as an input into an artificial supervised neural network. This work considers global non-destructive tests focused only on the soundness estimation of the system. The neural network involved is a supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm, which classifies the beams in four clusters. The classification consists in beam damaged or not damaged. If the beam is damaged the intensity of the fault is established. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/193492 Zapico, Adriana Maria; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila; Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence; Brill Academic Publishers; Journal of Adhesion Science and Technology; 25; 18; 8-2011; 2435-2443 0169-4243 1568-5616 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/193492 |
| identifier_str_mv |
Zapico, Adriana Maria; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila; Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence; Brill Academic Publishers; Journal of Adhesion Science and Technology; 25; 18; 8-2011; 2435-2443 0169-4243 1568-5616 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1163/016942411X580126 info:eu-repo/semantics/altIdentifier/doi/10.1163/016942411X580126 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Brill Academic Publishers |
| publisher.none.fl_str_mv |
Brill Academic Publishers |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782641667309568 |
| score |
12.982451 |