Forecasting Inflation in Argentina: A Comparison of Different Models

Autores
D'Amato, Garegnani Lorena; Gómez Aguirre, Maximiliano; Krysa, Ariel; Libonatti, Luis
Año de publicación
2018
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In general, central banks are concerned with keeping the inflation rate stable while also sustaining output close to an efficient level. Under “inflation targeting”, forecasts of the evolution of the general price level are an essential input for policy decisions and these are usually released in quarterly “Inflation Reports”. The costs and benefits of transparency in monetary policy are widely debated, but the need for a central bank to incorporate forecasts of future inflation is broadly agreed. In short, forecasting inflation is of foremost importance to households, businesses, and policymakers. In 2016, the Central Bank of Argentina began announcing and inflation targeting scheme. In this context, providing the authorities with good estimates of relevant macroeconomic variables turns out to be crucial to make the pertinent corrections to reach the desired policy goals. This paper develops a group of models to forecast inflation in Argentina and conducts a comparison of their predictive ability at different horizons. Our variety of models includes: (i) univariate time series models, (ii) VARs, Bayesian VARs and Time-Varying Parameter VARs, and (iii) conventional New Keynesian Phillips Curves including one that incorporates money to evaluate its information content as a predictor of inflation. We compare the predictive performance of the different methods using the Giacomini-White test over the relevant horizons for monetary policy decisions.
Facultad de Ciencias Económicas
Materia
Ciencias Económicas
Inflation rate
Forecasting
Time series models
Phillips curve
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/169117

id SEDICI_296b2fa650f34b56cbddfd001c8de478
oai_identifier_str oai:sedici.unlp.edu.ar:10915/169117
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Forecasting Inflation in Argentina: A Comparison of Different ModelsD'Amato, Garegnani LorenaGómez Aguirre, MaximilianoKrysa, ArielLibonatti, LuisCiencias EconómicasInflation rateForecastingTime series modelsPhillips curveIn general, central banks are concerned with keeping the inflation rate stable while also sustaining output close to an efficient level. Under “inflation targeting”, forecasts of the evolution of the general price level are an essential input for policy decisions and these are usually released in quarterly “Inflation Reports”. The costs and benefits of transparency in monetary policy are widely debated, but the need for a central bank to incorporate forecasts of future inflation is broadly agreed. In short, forecasting inflation is of foremost importance to households, businesses, and policymakers. In 2016, the Central Bank of Argentina began announcing and inflation targeting scheme. In this context, providing the authorities with good estimates of relevant macroeconomic variables turns out to be crucial to make the pertinent corrections to reach the desired policy goals. This paper develops a group of models to forecast inflation in Argentina and conducts a comparison of their predictive ability at different horizons. Our variety of models includes: (i) univariate time series models, (ii) VARs, Bayesian VARs and Time-Varying Parameter VARs, and (iii) conventional New Keynesian Phillips Curves including one that incorporates money to evaluate its information content as a predictor of inflation. We compare the predictive performance of the different methods using the Giacomini-White test over the relevant horizons for monetary policy decisions.Facultad de Ciencias Económicas2018-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/169117enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-28590-6-0info:eu-repo/semantics/altIdentifier/url/https://bd.aaep.org.ar/anales/works/works2018/damato.pdfinfo:eu-repo/semantics/altIdentifier/issn/1852-0022info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:15:26Zoai:sedici.unlp.edu.ar:10915/169117Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:15:26.49SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Forecasting Inflation in Argentina: A Comparison of Different Models
title Forecasting Inflation in Argentina: A Comparison of Different Models
spellingShingle Forecasting Inflation in Argentina: A Comparison of Different Models
D'Amato, Garegnani Lorena
Ciencias Económicas
Inflation rate
Forecasting
Time series models
Phillips curve
title_short Forecasting Inflation in Argentina: A Comparison of Different Models
title_full Forecasting Inflation in Argentina: A Comparison of Different Models
title_fullStr Forecasting Inflation in Argentina: A Comparison of Different Models
title_full_unstemmed Forecasting Inflation in Argentina: A Comparison of Different Models
title_sort Forecasting Inflation in Argentina: A Comparison of Different Models
dc.creator.none.fl_str_mv D'Amato, Garegnani Lorena
Gómez Aguirre, Maximiliano
Krysa, Ariel
Libonatti, Luis
author D'Amato, Garegnani Lorena
author_facet D'Amato, Garegnani Lorena
Gómez Aguirre, Maximiliano
Krysa, Ariel
Libonatti, Luis
author_role author
author2 Gómez Aguirre, Maximiliano
Krysa, Ariel
Libonatti, Luis
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Económicas
Inflation rate
Forecasting
Time series models
Phillips curve
topic Ciencias Económicas
Inflation rate
Forecasting
Time series models
Phillips curve
dc.description.none.fl_txt_mv In general, central banks are concerned with keeping the inflation rate stable while also sustaining output close to an efficient level. Under “inflation targeting”, forecasts of the evolution of the general price level are an essential input for policy decisions and these are usually released in quarterly “Inflation Reports”. The costs and benefits of transparency in monetary policy are widely debated, but the need for a central bank to incorporate forecasts of future inflation is broadly agreed. In short, forecasting inflation is of foremost importance to households, businesses, and policymakers. In 2016, the Central Bank of Argentina began announcing and inflation targeting scheme. In this context, providing the authorities with good estimates of relevant macroeconomic variables turns out to be crucial to make the pertinent corrections to reach the desired policy goals. This paper develops a group of models to forecast inflation in Argentina and conducts a comparison of their predictive ability at different horizons. Our variety of models includes: (i) univariate time series models, (ii) VARs, Bayesian VARs and Time-Varying Parameter VARs, and (iii) conventional New Keynesian Phillips Curves including one that incorporates money to evaluate its information content as a predictor of inflation. We compare the predictive performance of the different methods using the Giacomini-White test over the relevant horizons for monetary policy decisions.
Facultad de Ciencias Económicas
description In general, central banks are concerned with keeping the inflation rate stable while also sustaining output close to an efficient level. Under “inflation targeting”, forecasts of the evolution of the general price level are an essential input for policy decisions and these are usually released in quarterly “Inflation Reports”. The costs and benefits of transparency in monetary policy are widely debated, but the need for a central bank to incorporate forecasts of future inflation is broadly agreed. In short, forecasting inflation is of foremost importance to households, businesses, and policymakers. In 2016, the Central Bank of Argentina began announcing and inflation targeting scheme. In this context, providing the authorities with good estimates of relevant macroeconomic variables turns out to be crucial to make the pertinent corrections to reach the desired policy goals. This paper develops a group of models to forecast inflation in Argentina and conducts a comparison of their predictive ability at different horizons. Our variety of models includes: (i) univariate time series models, (ii) VARs, Bayesian VARs and Time-Varying Parameter VARs, and (iii) conventional New Keynesian Phillips Curves including one that incorporates money to evaluate its information content as a predictor of inflation. We compare the predictive performance of the different methods using the Giacomini-White test over the relevant horizons for monetary policy decisions.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/169117
url http://sedici.unlp.edu.ar/handle/10915/169117
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-28590-6-0
info:eu-repo/semantics/altIdentifier/url/https://bd.aaep.org.ar/anales/works/works2018/damato.pdf
info:eu-repo/semantics/altIdentifier/issn/1852-0022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260658946572288
score 13.13397