Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2
- Autores
- Perez Obando, J.; Marin Silva, D.; Pinotti, Adriana; Pizzio, Luis René; Osorio Vargas, P.; Rengifo Herrera, J.
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Las propiedades autolimpiantes de superficies de TiO2 son el resultado de un efecto sinérgico entre la luz UV que induce la generación de especies reactivas de oxígeno (ROS) sobre la superficie, que atacan moléculas orgánicas adsorbidas y la superhidrofilicidad que conduce a la extensión de las gotas de agua. Por otra parte, el TiO2 es un semiconductor con una diferencia de energía (band gap) entre la banda de valencia y la de conducción de 3,2 eV, permitiendo la producción de ROS sólo bajo irradiación UV de longitud de onda inferior a 387 nm. Pocos estudios pueden encontrarse en la literatura sobre la utilización de TiO2 modificado con nitrógeno activado por medio de luz visible como material autolimpiante. Por ejemplo, Irie et al. (2003) y Premkumar (2004) encontraron que películas delgadas de TiO2 dopadas con N2 depositadas sobre SiO2 mostraron super hidrofilicidad bajo luz visible. Ambos autores sugirieron que la actividad a la luz visible sería causada por la disminución del valor del band gap, como fue descrito por Asahi et al. (2001). Por otra parte, polímeros biodegradables pueden usarse como sustratos de nanopartículas de TiO2 para ser evaluados como superficies autolimpiantes. El quitosano (QS) es un poliaminosácarido lineal compuesto por unidades monoméricas, N-acetil glucosamina y Dglucosamina, unidas a través de enlaces glucosídicos β-(1-4) (Lamarra et al. 2017). El QS es un polímero natural con hidrofilicidad, biocompatibilidad, biodegradabilidad y con propiedades no tóxicas que ha sido estudiado como un sustrato para inmovilizar nanopartículas de TiO2. Sin embargo, la mayor parte de parte de los estudios ha sido dirigidos a la absorción de tintes orgánicos de ambientes marítimos, inactivación de bacterias y apósitos cicatrizante de heridas (Archana et al. 2013). En este contexto, los objetivos del trabajo fueron obtener matrices utilizando quitosano como material soporte de nanopartículas de TiO2 estudiando sus propiedades físico-químicas, antimicrobianas y autolimpiantes.
Sección: Ingeniería Química.
Facultad de Ingeniería - Materia
-
Ingeniería Química
Nanopartículas
quitosano
óxido de titanio - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/75702
Ver los metadatos del registro completo
id |
SEDICI_248913f3fdb14c08b801843115fc9022 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/75702 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2Perez Obando, J.Marin Silva, D.Pinotti, AdrianaPizzio, Luis RenéOsorio Vargas, P.Rengifo Herrera, J.Ingeniería QuímicaNanopartículasquitosanoóxido de titanioLas propiedades autolimpiantes de superficies de TiO2 son el resultado de un efecto sinérgico entre la luz UV que induce la generación de especies reactivas de oxígeno (ROS) sobre la superficie, que atacan moléculas orgánicas adsorbidas y la superhidrofilicidad que conduce a la extensión de las gotas de agua. Por otra parte, el TiO2 es un semiconductor con una diferencia de energía (band gap) entre la banda de valencia y la de conducción de 3,2 eV, permitiendo la producción de ROS sólo bajo irradiación UV de longitud de onda inferior a 387 nm. Pocos estudios pueden encontrarse en la literatura sobre la utilización de TiO2 modificado con nitrógeno activado por medio de luz visible como material autolimpiante. Por ejemplo, Irie et al. (2003) y Premkumar (2004) encontraron que películas delgadas de TiO2 dopadas con N2 depositadas sobre SiO2 mostraron super hidrofilicidad bajo luz visible. Ambos autores sugirieron que la actividad a la luz visible sería causada por la disminución del valor del band gap, como fue descrito por Asahi et al. (2001). Por otra parte, polímeros biodegradables pueden usarse como sustratos de nanopartículas de TiO2 para ser evaluados como superficies autolimpiantes. El quitosano (QS) es un poliaminosácarido lineal compuesto por unidades monoméricas, N-acetil glucosamina y Dglucosamina, unidas a través de enlaces glucosídicos β-(1-4) (Lamarra et al. 2017). El QS es un polímero natural con hidrofilicidad, biocompatibilidad, biodegradabilidad y con propiedades no tóxicas que ha sido estudiado como un sustrato para inmovilizar nanopartículas de TiO2. Sin embargo, la mayor parte de parte de los estudios ha sido dirigidos a la absorción de tintes orgánicos de ambientes marítimos, inactivación de bacterias y apósitos cicatrizante de heridas (Archana et al. 2013). En este contexto, los objetivos del trabajo fueron obtener matrices utilizando quitosano como material soporte de nanopartículas de TiO2 estudiando sus propiedades físico-químicas, antimicrobianas y autolimpiantes.Sección: Ingeniería Química.Facultad de Ingeniería2019-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf648-653http://sedici.unlp.edu.ar/handle/10915/75702spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1749-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:45:15Zoai:sedici.unlp.edu.ar:10915/75702Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:45:15.574SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 |
title |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 |
spellingShingle |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 Perez Obando, J. Ingeniería Química Nanopartículas quitosano óxido de titanio |
title_short |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 |
title_full |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 |
title_fullStr |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 |
title_full_unstemmed |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 |
title_sort |
Propiedades autolimpiantes y antimicrobianas de películas de quitosano funcionalizadas con nanopartículas de urea/TiO2 |
dc.creator.none.fl_str_mv |
Perez Obando, J. Marin Silva, D. Pinotti, Adriana Pizzio, Luis René Osorio Vargas, P. Rengifo Herrera, J. |
author |
Perez Obando, J. |
author_facet |
Perez Obando, J. Marin Silva, D. Pinotti, Adriana Pizzio, Luis René Osorio Vargas, P. Rengifo Herrera, J. |
author_role |
author |
author2 |
Marin Silva, D. Pinotti, Adriana Pizzio, Luis René Osorio Vargas, P. Rengifo Herrera, J. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ingeniería Química Nanopartículas quitosano óxido de titanio |
topic |
Ingeniería Química Nanopartículas quitosano óxido de titanio |
dc.description.none.fl_txt_mv |
Las propiedades autolimpiantes de superficies de TiO2 son el resultado de un efecto sinérgico entre la luz UV que induce la generación de especies reactivas de oxígeno (ROS) sobre la superficie, que atacan moléculas orgánicas adsorbidas y la superhidrofilicidad que conduce a la extensión de las gotas de agua. Por otra parte, el TiO2 es un semiconductor con una diferencia de energía (band gap) entre la banda de valencia y la de conducción de 3,2 eV, permitiendo la producción de ROS sólo bajo irradiación UV de longitud de onda inferior a 387 nm. Pocos estudios pueden encontrarse en la literatura sobre la utilización de TiO2 modificado con nitrógeno activado por medio de luz visible como material autolimpiante. Por ejemplo, Irie et al. (2003) y Premkumar (2004) encontraron que películas delgadas de TiO2 dopadas con N2 depositadas sobre SiO2 mostraron super hidrofilicidad bajo luz visible. Ambos autores sugirieron que la actividad a la luz visible sería causada por la disminución del valor del band gap, como fue descrito por Asahi et al. (2001). Por otra parte, polímeros biodegradables pueden usarse como sustratos de nanopartículas de TiO2 para ser evaluados como superficies autolimpiantes. El quitosano (QS) es un poliaminosácarido lineal compuesto por unidades monoméricas, N-acetil glucosamina y Dglucosamina, unidas a través de enlaces glucosídicos β-(1-4) (Lamarra et al. 2017). El QS es un polímero natural con hidrofilicidad, biocompatibilidad, biodegradabilidad y con propiedades no tóxicas que ha sido estudiado como un sustrato para inmovilizar nanopartículas de TiO2. Sin embargo, la mayor parte de parte de los estudios ha sido dirigidos a la absorción de tintes orgánicos de ambientes marítimos, inactivación de bacterias y apósitos cicatrizante de heridas (Archana et al. 2013). En este contexto, los objetivos del trabajo fueron obtener matrices utilizando quitosano como material soporte de nanopartículas de TiO2 estudiando sus propiedades físico-químicas, antimicrobianas y autolimpiantes. Sección: Ingeniería Química. Facultad de Ingeniería |
description |
Las propiedades autolimpiantes de superficies de TiO2 son el resultado de un efecto sinérgico entre la luz UV que induce la generación de especies reactivas de oxígeno (ROS) sobre la superficie, que atacan moléculas orgánicas adsorbidas y la superhidrofilicidad que conduce a la extensión de las gotas de agua. Por otra parte, el TiO2 es un semiconductor con una diferencia de energía (band gap) entre la banda de valencia y la de conducción de 3,2 eV, permitiendo la producción de ROS sólo bajo irradiación UV de longitud de onda inferior a 387 nm. Pocos estudios pueden encontrarse en la literatura sobre la utilización de TiO2 modificado con nitrógeno activado por medio de luz visible como material autolimpiante. Por ejemplo, Irie et al. (2003) y Premkumar (2004) encontraron que películas delgadas de TiO2 dopadas con N2 depositadas sobre SiO2 mostraron super hidrofilicidad bajo luz visible. Ambos autores sugirieron que la actividad a la luz visible sería causada por la disminución del valor del band gap, como fue descrito por Asahi et al. (2001). Por otra parte, polímeros biodegradables pueden usarse como sustratos de nanopartículas de TiO2 para ser evaluados como superficies autolimpiantes. El quitosano (QS) es un poliaminosácarido lineal compuesto por unidades monoméricas, N-acetil glucosamina y Dglucosamina, unidas a través de enlaces glucosídicos β-(1-4) (Lamarra et al. 2017). El QS es un polímero natural con hidrofilicidad, biocompatibilidad, biodegradabilidad y con propiedades no tóxicas que ha sido estudiado como un sustrato para inmovilizar nanopartículas de TiO2. Sin embargo, la mayor parte de parte de los estudios ha sido dirigidos a la absorción de tintes orgánicos de ambientes marítimos, inactivación de bacterias y apósitos cicatrizante de heridas (Archana et al. 2013). En este contexto, los objetivos del trabajo fueron obtener matrices utilizando quitosano como material soporte de nanopartículas de TiO2 estudiando sus propiedades físico-químicas, antimicrobianas y autolimpiantes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/75702 |
url |
http://sedici.unlp.edu.ar/handle/10915/75702 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1749-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 648-653 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260325508841472 |
score |
13.13397 |