Evolution of Communities with Focus on Stability

Autores
Sarraute, Carlos; Calderon, Gervasio
Año de publicación
2013
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Community detection is an important tool for analyzing the social graph of mobile phone users. The problem of finding communities in static graphs has been widely studied. However, since mobile social networks evolve over time, static graph algorithms are not sufficient. To be useful in practice (e.g. when used by a telecom analyst), the stability of the partitions becomes critical. We tackle this particular use case in this paper: tracking evolution of communities in dynamic scenarios with focus on stability. We propose two modifications to a widely used static community detection algorithm: we introduce fixed nodes and preferential attachment to pre-existing communities. We then describe experiments to study the stability and quality of the resulting partitions on real-world social networks, represented by monthly call graphs for millions of subscribers.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Social networks
Community detection algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/93435

id SEDICI_22a31ad92cbc81681d63a3607c56180e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/93435
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evolution of Communities with Focus on StabilitySarraute, CarlosCalderon, GervasioCiencias InformáticasSocial networksCommunity detection algorithmCommunity detection is an important tool for analyzing the social graph of mobile phone users. The problem of finding communities in static graphs has been widely studied. However, since mobile social networks evolve over time, static graph algorithms are not sufficient. To be useful in practice (e.g. when used by a telecom analyst), the stability of the partitions becomes critical. We tackle this particular use case in this paper: tracking evolution of communities in dynamic scenarios with focus on stability. We propose two modifications to a widely used static community detection algorithm: we introduce fixed nodes and preferential attachment to pre-existing communities. We then describe experiments to study the stability and quality of the resulting partitions on real-world social networks, represented by monthly call graphs for millions of subscribers.Sociedad Argentina de Informática e Investigación Operativa2013-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf211-219http://sedici.unlp.edu.ar/handle/10915/93435enginfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:22Zoai:sedici.unlp.edu.ar:10915/93435Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:23.17SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evolution of Communities with Focus on Stability
title Evolution of Communities with Focus on Stability
spellingShingle Evolution of Communities with Focus on Stability
Sarraute, Carlos
Ciencias Informáticas
Social networks
Community detection algorithm
title_short Evolution of Communities with Focus on Stability
title_full Evolution of Communities with Focus on Stability
title_fullStr Evolution of Communities with Focus on Stability
title_full_unstemmed Evolution of Communities with Focus on Stability
title_sort Evolution of Communities with Focus on Stability
dc.creator.none.fl_str_mv Sarraute, Carlos
Calderon, Gervasio
author Sarraute, Carlos
author_facet Sarraute, Carlos
Calderon, Gervasio
author_role author
author2 Calderon, Gervasio
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Social networks
Community detection algorithm
topic Ciencias Informáticas
Social networks
Community detection algorithm
dc.description.none.fl_txt_mv Community detection is an important tool for analyzing the social graph of mobile phone users. The problem of finding communities in static graphs has been widely studied. However, since mobile social networks evolve over time, static graph algorithms are not sufficient. To be useful in practice (e.g. when used by a telecom analyst), the stability of the partitions becomes critical. We tackle this particular use case in this paper: tracking evolution of communities in dynamic scenarios with focus on stability. We propose two modifications to a widely used static community detection algorithm: we introduce fixed nodes and preferential attachment to pre-existing communities. We then describe experiments to study the stability and quality of the resulting partitions on real-world social networks, represented by monthly call graphs for millions of subscribers.
Sociedad Argentina de Informática e Investigación Operativa
description Community detection is an important tool for analyzing the social graph of mobile phone users. The problem of finding communities in static graphs has been widely studied. However, since mobile social networks evolve over time, static graph algorithms are not sufficient. To be useful in practice (e.g. when used by a telecom analyst), the stability of the partitions becomes critical. We tackle this particular use case in this paper: tracking evolution of communities in dynamic scenarios with focus on stability. We propose two modifications to a widely used static community detection algorithm: we introduce fixed nodes and preferential attachment to pre-existing communities. We then describe experiments to study the stability and quality of the resulting partitions on real-world social networks, represented by monthly call graphs for millions of subscribers.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/93435
url http://sedici.unlp.edu.ar/handle/10915/93435
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1850-2806
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
211-219
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616067773628416
score 13.070432