The Use of ART2 to create summaries from texts of different areas

Autores
Christ, Rafael E. R.; Bassani, T.; Nievola, Julio César; Junior, Carlos N. Silla
Año de publicación
2004
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The volume of documents available electronically is growing fast, so it becomes difficult to access and select desired information in a fast and efficient way. In this context the automatic summarization task assumes a very imperative role; therefore one seeks to reduce the size of a document, preserving to the maximum its informative content. In this paper, it’s applied a model which uses sentence clusters from an ART2 neural network to generate extractive summaries. Different models can be developed from distinct area documents. Hence, the aim of this work is to evaluate the performance of those models when they summarize documents from correlated or non correlated areas.
Eje: V - Workshop de agentes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
ART2
Create Summaries
Texts of Different Areas
Neural nets
ARTIFICIAL INTELLIGENCE
Intelligent agents
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22561

id SEDICI_20bd15d729681962025a4b78b9a4aa82
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22561
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The Use of ART2 to create summaries from texts of different areasChrist, Rafael E. R.Bassani, T.Nievola, Julio CésarJunior, Carlos N. SillaCiencias InformáticasART2Create SummariesTexts of Different AreasNeural netsARTIFICIAL INTELLIGENCEIntelligent agentsThe volume of documents available electronically is growing fast, so it becomes difficult to access and select desired information in a fast and efficient way. In this context the automatic summarization task assumes a very imperative role; therefore one seeks to reduce the size of a document, preserving to the maximum its informative content. In this paper, it’s applied a model which uses sentence clusters from an ART2 neural network to generate extractive summaries. Different models can be developed from distinct area documents. Hence, the aim of this work is to evaluate the performance of those models when they summarize documents from correlated or non correlated areas.Eje: V - Workshop de agentes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2004-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22561enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:37Zoai:sedici.unlp.edu.ar:10915/22561Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:38.178SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The Use of ART2 to create summaries from texts of different areas
title The Use of ART2 to create summaries from texts of different areas
spellingShingle The Use of ART2 to create summaries from texts of different areas
Christ, Rafael E. R.
Ciencias Informáticas
ART2
Create Summaries
Texts of Different Areas
Neural nets
ARTIFICIAL INTELLIGENCE
Intelligent agents
title_short The Use of ART2 to create summaries from texts of different areas
title_full The Use of ART2 to create summaries from texts of different areas
title_fullStr The Use of ART2 to create summaries from texts of different areas
title_full_unstemmed The Use of ART2 to create summaries from texts of different areas
title_sort The Use of ART2 to create summaries from texts of different areas
dc.creator.none.fl_str_mv Christ, Rafael E. R.
Bassani, T.
Nievola, Julio César
Junior, Carlos N. Silla
author Christ, Rafael E. R.
author_facet Christ, Rafael E. R.
Bassani, T.
Nievola, Julio César
Junior, Carlos N. Silla
author_role author
author2 Bassani, T.
Nievola, Julio César
Junior, Carlos N. Silla
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
ART2
Create Summaries
Texts of Different Areas
Neural nets
ARTIFICIAL INTELLIGENCE
Intelligent agents
topic Ciencias Informáticas
ART2
Create Summaries
Texts of Different Areas
Neural nets
ARTIFICIAL INTELLIGENCE
Intelligent agents
dc.description.none.fl_txt_mv The volume of documents available electronically is growing fast, so it becomes difficult to access and select desired information in a fast and efficient way. In this context the automatic summarization task assumes a very imperative role; therefore one seeks to reduce the size of a document, preserving to the maximum its informative content. In this paper, it’s applied a model which uses sentence clusters from an ART2 neural network to generate extractive summaries. Different models can be developed from distinct area documents. Hence, the aim of this work is to evaluate the performance of those models when they summarize documents from correlated or non correlated areas.
Eje: V - Workshop de agentes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description The volume of documents available electronically is growing fast, so it becomes difficult to access and select desired information in a fast and efficient way. In this context the automatic summarization task assumes a very imperative role; therefore one seeks to reduce the size of a document, preserving to the maximum its informative content. In this paper, it’s applied a model which uses sentence clusters from an ART2 neural network to generate extractive summaries. Different models can be developed from distinct area documents. Hence, the aim of this work is to evaluate the performance of those models when they summarize documents from correlated or non correlated areas.
publishDate 2004
dc.date.none.fl_str_mv 2004-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22561
url http://sedici.unlp.edu.ar/handle/10915/22561
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782823334150144
score 12.982451