A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem

Autores
Pintarelli, María Beatriz
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The problem is to find a(t) y w(x; t) such that wt = a(t) (wx)x+r(x; t) under the initial condition w(x; 0) =fi(x) and the boundary conditions w(0; t) = 0 ; wx(0; t) = wx(1; t)+alfa w(1; t) about a region D ={(x; t); 0 <x < 1; t >0}. In addition it must be fulfilled the integral of w (x, t) with respect to x is equal to E(t) where fi(x) , r(x; t) and E(t) are known functions and alfa is an arbitrary real number other than zero. The objective is to solve the problem as an application of the inverse moment problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. In addition, the method is illustrated with several examples.
Facultad de Ciencias Exactas
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)
Materia
Matemática
generalized moment problem
integral equations
inverse problem
parabolic PDEs
truncated expansion method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/78707

id SEDICI_0703f3a488faf14073486dd6d8194198
oai_identifier_str oai:sedici.unlp.edu.ar:10915/78707
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A Problem of Coefficient Determination in Parabolic Equations Solved as Moment ProblemPintarelli, María BeatrizMatemáticageneralized moment problemintegral equationsinverse problemparabolic PDEstruncated expansion methodThe problem is to find a(t) y w(x; t) such that wt = a(t) (wx)x+r(x; t) under the initial condition w(x; 0) =fi(x) and the boundary conditions w(0; t) = 0 ; wx(0; t) = wx(1; t)+alfa w(1; t) about a region D ={(x; t); 0 &lt;x &lt; 1; t &gt;0}. In addition it must be fulfilled the integral of w (x, t) with respect to x is equal to E(t) where fi(x) , r(x; t) and E(t) are known functions and alfa is an arbitrary real number other than zero. The objective is to solve the problem as an application of the inverse moment problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. In addition, the method is illustrated with several examples.Facultad de Ciencias ExactasGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf109-114http://sedici.unlp.edu.ar/handle/10915/78707enginfo:eu-repo/semantics/altIdentifier/issn/2227-4324info:eu-repo/semantics/altIdentifier/doi/10.14419/ijamr.v6i4.8319info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:14:17Zoai:sedici.unlp.edu.ar:10915/78707Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:14:17.627SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
title A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
spellingShingle A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
Pintarelli, María Beatriz
Matemática
generalized moment problem
integral equations
inverse problem
parabolic PDEs
truncated expansion method
title_short A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
title_full A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
title_fullStr A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
title_full_unstemmed A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
title_sort A Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
dc.creator.none.fl_str_mv Pintarelli, María Beatriz
author Pintarelli, María Beatriz
author_facet Pintarelli, María Beatriz
author_role author
dc.subject.none.fl_str_mv Matemática
generalized moment problem
integral equations
inverse problem
parabolic PDEs
truncated expansion method
topic Matemática
generalized moment problem
integral equations
inverse problem
parabolic PDEs
truncated expansion method
dc.description.none.fl_txt_mv The problem is to find a(t) y w(x; t) such that wt = a(t) (wx)x+r(x; t) under the initial condition w(x; 0) =fi(x) and the boundary conditions w(0; t) = 0 ; wx(0; t) = wx(1; t)+alfa w(1; t) about a region D ={(x; t); 0 &lt;x &lt; 1; t &gt;0}. In addition it must be fulfilled the integral of w (x, t) with respect to x is equal to E(t) where fi(x) , r(x; t) and E(t) are known functions and alfa is an arbitrary real number other than zero. The objective is to solve the problem as an application of the inverse moment problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. In addition, the method is illustrated with several examples.
Facultad de Ciencias Exactas
Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)
description The problem is to find a(t) y w(x; t) such that wt = a(t) (wx)x+r(x; t) under the initial condition w(x; 0) =fi(x) and the boundary conditions w(0; t) = 0 ; wx(0; t) = wx(1; t)+alfa w(1; t) about a region D ={(x; t); 0 &lt;x &lt; 1; t &gt;0}. In addition it must be fulfilled the integral of w (x, t) with respect to x is equal to E(t) where fi(x) , r(x; t) and E(t) are known functions and alfa is an arbitrary real number other than zero. The objective is to solve the problem as an application of the inverse moment problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. In addition, the method is illustrated with several examples.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/78707
url http://sedici.unlp.edu.ar/handle/10915/78707
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2227-4324
info:eu-repo/semantics/altIdentifier/doi/10.14419/ijamr.v6i4.8319
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
109-114
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616013881016320
score 13.070432