Prior knowledge in evolutionary fuzzy recurrent controllers design
- Autores
- Apolloni, Javier; Kavka, Carlos; Roggero, Patricia
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A fuzzy controller is usually designed by formulating the knowledge of a human expert into a set of linguistic variables and fuzzy rules. As it is well known, the use of prior knowledge can dramatically improve the performance and quality of the fuzzy system design process. In previous works we have introduced the RFV model, a representation for recurrent fuzzy controllers based on Voronoi diagrams that can represent fuzzy systems with synergistic rules, ful lling the completeness property and providing a simple way to introduce prior knowledge. In this work we present our current approach in the study of the inclusion of prior knowledge in the context of the RFV model.
Eje: Inteligencia artificial
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Prior Knowledge
Evolutionary Fuzzy Recurrent
Controllers Design - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21160
Ver los metadatos del registro completo
id |
SEDICI_196aa307bc9a0d6c903465590ee28531 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21160 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Prior knowledge in evolutionary fuzzy recurrent controllers designApolloni, JavierKavka, CarlosRoggero, PatriciaCiencias InformáticasARTIFICIAL INTELLIGENCEPrior KnowledgeEvolutionary Fuzzy RecurrentControllers DesignA fuzzy controller is usually designed by formulating the knowledge of a human expert into a set of linguistic variables and fuzzy rules. As it is well known, the use of prior knowledge can dramatically improve the performance and quality of the fuzzy system design process. In previous works we have introduced the RFV model, a representation for recurrent fuzzy controllers based on Voronoi diagrams that can represent fuzzy systems with synergistic rules, ful lling the completeness property and providing a simple way to introduce prior knowledge. In this work we present our current approach in the study of the inclusion of prior knowledge in the context of the RFV model.Eje: Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI)2005-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf349-356http://sedici.unlp.edu.ar/handle/10915/21160enginfo:eu-repo/semantics/altIdentifier/isbn/950-665-337-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:21Zoai:sedici.unlp.edu.ar:10915/21160Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:21.778SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Prior knowledge in evolutionary fuzzy recurrent controllers design |
title |
Prior knowledge in evolutionary fuzzy recurrent controllers design |
spellingShingle |
Prior knowledge in evolutionary fuzzy recurrent controllers design Apolloni, Javier Ciencias Informáticas ARTIFICIAL INTELLIGENCE Prior Knowledge Evolutionary Fuzzy Recurrent Controllers Design |
title_short |
Prior knowledge in evolutionary fuzzy recurrent controllers design |
title_full |
Prior knowledge in evolutionary fuzzy recurrent controllers design |
title_fullStr |
Prior knowledge in evolutionary fuzzy recurrent controllers design |
title_full_unstemmed |
Prior knowledge in evolutionary fuzzy recurrent controllers design |
title_sort |
Prior knowledge in evolutionary fuzzy recurrent controllers design |
dc.creator.none.fl_str_mv |
Apolloni, Javier Kavka, Carlos Roggero, Patricia |
author |
Apolloni, Javier |
author_facet |
Apolloni, Javier Kavka, Carlos Roggero, Patricia |
author_role |
author |
author2 |
Kavka, Carlos Roggero, Patricia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Prior Knowledge Evolutionary Fuzzy Recurrent Controllers Design |
topic |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Prior Knowledge Evolutionary Fuzzy Recurrent Controllers Design |
dc.description.none.fl_txt_mv |
A fuzzy controller is usually designed by formulating the knowledge of a human expert into a set of linguistic variables and fuzzy rules. As it is well known, the use of prior knowledge can dramatically improve the performance and quality of the fuzzy system design process. In previous works we have introduced the RFV model, a representation for recurrent fuzzy controllers based on Voronoi diagrams that can represent fuzzy systems with synergistic rules, ful lling the completeness property and providing a simple way to introduce prior knowledge. In this work we present our current approach in the study of the inclusion of prior knowledge in the context of the RFV model. Eje: Inteligencia artificial Red de Universidades con Carreras en Informática (RedUNCI) |
description |
A fuzzy controller is usually designed by formulating the knowledge of a human expert into a set of linguistic variables and fuzzy rules. As it is well known, the use of prior knowledge can dramatically improve the performance and quality of the fuzzy system design process. In previous works we have introduced the RFV model, a representation for recurrent fuzzy controllers based on Voronoi diagrams that can represent fuzzy systems with synergistic rules, ful lling the completeness property and providing a simple way to introduce prior knowledge. In this work we present our current approach in the study of the inclusion of prior knowledge in the context of the RFV model. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21160 |
url |
http://sedici.unlp.edu.ar/handle/10915/21160 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/950-665-337-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 349-356 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260110984871936 |
score |
13.13397 |