Prior knowledge elicitation: The past, present, and future
- Autores
- Mikkola, Petrus; Martín, Osvaldo Antonio; Chandramoul, Suyog; Hartmann, Marcelo; Abril Pla, Oriol; Thomas, Owen; Pesonen, Henri; Corander, Jukka; Vehtari, Aki; Kaski, Samuel; Bürkner, Paul Christian; Klami, Arto
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology.
Fil: Mikkola, Petrus. Aalto University; Finlandia
Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Aalto University; Finlandia
Fil: Chandramoul, Suyog. Aalto University; Finlandia
Fil: Hartmann, Marcelo. University of Helsinki; Finlandia
Fil: Abril Pla, Oriol. University of Helsinki; Finlandia
Fil: Thomas, Owen. University of Oslo; Noruega
Fil: Pesonen, Henri. University of Oslo; Noruega
Fil: Corander, Jukka. University of Oslo; Noruega
Fil: Vehtari, Aki. Aalto University; Finlandia
Fil: Kaski, Samuel. Aalto University; Finlandia
Fil: Bürkner, Paul Christian. University Of Stuttgart; Alemania
Fil: Klami, Arto. University of Helsinki; Finlandia - Materia
-
prior elicitation
prior distribution
informative prior
Bayesian workflow
domain knowledge - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/183197
Ver los metadatos del registro completo
id |
CONICETDig_41dd288b447976ba13f682559a10c922 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/183197 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prior knowledge elicitation: The past, present, and futureMikkola, PetrusMartín, Osvaldo AntonioChandramoul, SuyogHartmann, MarceloAbril Pla, OriolThomas, OwenPesonen, HenriCorander, JukkaVehtari, AkiKaski, SamuelBürkner, Paul ChristianKlami, Artoprior elicitationprior distributioninformative priorBayesian workflowdomain knowledgehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology.Fil: Mikkola, Petrus. Aalto University; FinlandiaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Aalto University; FinlandiaFil: Chandramoul, Suyog. Aalto University; FinlandiaFil: Hartmann, Marcelo. University of Helsinki; FinlandiaFil: Abril Pla, Oriol. University of Helsinki; FinlandiaFil: Thomas, Owen. University of Oslo; NoruegaFil: Pesonen, Henri. University of Oslo; NoruegaFil: Corander, Jukka. University of Oslo; NoruegaFil: Vehtari, Aki. Aalto University; FinlandiaFil: Kaski, Samuel. Aalto University; FinlandiaFil: Bürkner, Paul Christian. University Of Stuttgart; AlemaniaFil: Klami, Arto. University of Helsinki; FinlandiaCornell University2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183197Mikkola, Petrus; Martín, Osvaldo Antonio; Chandramoul, Suyog ; Hartmann, Marcelo ; Abril Pla, Oriol ; et al.; Prior knowledge elicitation: The past, present, and future; Cornell University; arXiv; 12-2021; 1-602331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2112.01380info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:04Zoai:ri.conicet.gov.ar:11336/183197instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:04.506CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prior knowledge elicitation: The past, present, and future |
title |
Prior knowledge elicitation: The past, present, and future |
spellingShingle |
Prior knowledge elicitation: The past, present, and future Mikkola, Petrus prior elicitation prior distribution informative prior Bayesian workflow domain knowledge |
title_short |
Prior knowledge elicitation: The past, present, and future |
title_full |
Prior knowledge elicitation: The past, present, and future |
title_fullStr |
Prior knowledge elicitation: The past, present, and future |
title_full_unstemmed |
Prior knowledge elicitation: The past, present, and future |
title_sort |
Prior knowledge elicitation: The past, present, and future |
dc.creator.none.fl_str_mv |
Mikkola, Petrus Martín, Osvaldo Antonio Chandramoul, Suyog Hartmann, Marcelo Abril Pla, Oriol Thomas, Owen Pesonen, Henri Corander, Jukka Vehtari, Aki Kaski, Samuel Bürkner, Paul Christian Klami, Arto |
author |
Mikkola, Petrus |
author_facet |
Mikkola, Petrus Martín, Osvaldo Antonio Chandramoul, Suyog Hartmann, Marcelo Abril Pla, Oriol Thomas, Owen Pesonen, Henri Corander, Jukka Vehtari, Aki Kaski, Samuel Bürkner, Paul Christian Klami, Arto |
author_role |
author |
author2 |
Martín, Osvaldo Antonio Chandramoul, Suyog Hartmann, Marcelo Abril Pla, Oriol Thomas, Owen Pesonen, Henri Corander, Jukka Vehtari, Aki Kaski, Samuel Bürkner, Paul Christian Klami, Arto |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
prior elicitation prior distribution informative prior Bayesian workflow domain knowledge |
topic |
prior elicitation prior distribution informative prior Bayesian workflow domain knowledge |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology. Fil: Mikkola, Petrus. Aalto University; Finlandia Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Aalto University; Finlandia Fil: Chandramoul, Suyog. Aalto University; Finlandia Fil: Hartmann, Marcelo. University of Helsinki; Finlandia Fil: Abril Pla, Oriol. University of Helsinki; Finlandia Fil: Thomas, Owen. University of Oslo; Noruega Fil: Pesonen, Henri. University of Oslo; Noruega Fil: Corander, Jukka. University of Oslo; Noruega Fil: Vehtari, Aki. Aalto University; Finlandia Fil: Kaski, Samuel. Aalto University; Finlandia Fil: Bürkner, Paul Christian. University Of Stuttgart; Alemania Fil: Klami, Arto. University of Helsinki; Finlandia |
description |
Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/183197 Mikkola, Petrus; Martín, Osvaldo Antonio; Chandramoul, Suyog ; Hartmann, Marcelo ; Abril Pla, Oriol ; et al.; Prior knowledge elicitation: The past, present, and future; Cornell University; arXiv; 12-2021; 1-60 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/183197 |
identifier_str_mv |
Mikkola, Petrus; Martín, Osvaldo Antonio; Chandramoul, Suyog ; Hartmann, Marcelo ; Abril Pla, Oriol ; et al.; Prior knowledge elicitation: The past, present, and future; Cornell University; arXiv; 12-2021; 1-60 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2112.01380 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269890291957760 |
score |
13.13397 |