Time series modeling and synchronization using neural networks

Autores
Cofiño, Antonio S.; Gutiérrez, José Manuel
Año de publicación
2000
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In the last few years, neural networks have found interesting applications in the field of time series modeling and forecasting. Some recent results show the ability of these models to approximate the dynamical behavior of nonlinear chaotic systems, leading to similar dimensions and Lyapunov exponents. In this paper we analyze further the dynamical properties of neural networks when comparted with chaotic systems. In particular, we show that the possibility of synchronizing chaotic systems gives a natural criterion for determining similar dynamical behavior between these systems and neural approximate models. In particular we show that a neural model obtained from an experimental scalar laser-intensity time series can be synchronized to the time series, indicating that it captures the dynamical behavior of the system underlying the data.
I Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
nonlinear time series
system identification
Neural nets
Synchronization
identificación
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23407

id SEDICI_0d684760a2202165e6cd0eb8ab26cc56
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23407
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Time series modeling and synchronization using neural networksCofiño, Antonio S.Gutiérrez, José ManuelCiencias Informáticasnonlinear time seriessystem identificationNeural netsSynchronizationidentificaciónIn the last few years, neural networks have found interesting applications in the field of time series modeling and forecasting. Some recent results show the ability of these models to approximate the dynamical behavior of nonlinear chaotic systems, leading to similar dimensions and Lyapunov exponents. In this paper we analyze further the dynamical properties of neural networks when comparted with chaotic systems. In particular, we show that the possibility of synchronizing chaotic systems gives a natural criterion for determining similar dynamical behavior between these systems and neural approximate models. In particular we show that a neural model obtained from an experimental scalar laser-intensity time series can be synchronized to the time series, indicating that it captures the dynamical behavior of the system underlying the data.I Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2000-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23407enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:01Zoai:sedici.unlp.edu.ar:10915/23407Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:01.958SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Time series modeling and synchronization using neural networks
title Time series modeling and synchronization using neural networks
spellingShingle Time series modeling and synchronization using neural networks
Cofiño, Antonio S.
Ciencias Informáticas
nonlinear time series
system identification
Neural nets
Synchronization
identificación
title_short Time series modeling and synchronization using neural networks
title_full Time series modeling and synchronization using neural networks
title_fullStr Time series modeling and synchronization using neural networks
title_full_unstemmed Time series modeling and synchronization using neural networks
title_sort Time series modeling and synchronization using neural networks
dc.creator.none.fl_str_mv Cofiño, Antonio S.
Gutiérrez, José Manuel
author Cofiño, Antonio S.
author_facet Cofiño, Antonio S.
Gutiérrez, José Manuel
author_role author
author2 Gutiérrez, José Manuel
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
nonlinear time series
system identification
Neural nets
Synchronization
identificación
topic Ciencias Informáticas
nonlinear time series
system identification
Neural nets
Synchronization
identificación
dc.description.none.fl_txt_mv In the last few years, neural networks have found interesting applications in the field of time series modeling and forecasting. Some recent results show the ability of these models to approximate the dynamical behavior of nonlinear chaotic systems, leading to similar dimensions and Lyapunov exponents. In this paper we analyze further the dynamical properties of neural networks when comparted with chaotic systems. In particular, we show that the possibility of synchronizing chaotic systems gives a natural criterion for determining similar dynamical behavior between these systems and neural approximate models. In particular we show that a neural model obtained from an experimental scalar laser-intensity time series can be synchronized to the time series, indicating that it captures the dynamical behavior of the system underlying the data.
I Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description In the last few years, neural networks have found interesting applications in the field of time series modeling and forecasting. Some recent results show the ability of these models to approximate the dynamical behavior of nonlinear chaotic systems, leading to similar dimensions and Lyapunov exponents. In this paper we analyze further the dynamical properties of neural networks when comparted with chaotic systems. In particular, we show that the possibility of synchronizing chaotic systems gives a natural criterion for determining similar dynamical behavior between these systems and neural approximate models. In particular we show that a neural model obtained from an experimental scalar laser-intensity time series can be synchronized to the time series, indicating that it captures the dynamical behavior of the system underlying the data.
publishDate 2000
dc.date.none.fl_str_mv 2000-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23407
url http://sedici.unlp.edu.ar/handle/10915/23407
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063907848847360
score 13.22299