The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
- Autores
- Kataishi, Rodrigo Ezequiel
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility.
Fil: Kataishi, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; Argentina - Materia
-
NLP
MACHINE LEARNING
INNOVATION
TECHNOLOGICAL TRAJECTORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/261275
Ver los metadatos del registro completo
id |
CONICETDig_7d48b692ec033d79087ec4d79c5c206f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/261275 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social SciencesKataishi, Rodrigo EzequielNLPMACHINE LEARNINGINNOVATIONTECHNOLOGICAL TRAJECTORYhttps://purl.org/becyt/ford/5.9https://purl.org/becyt/ford/5This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility.Fil: Kataishi, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; ArgentinaElsevier2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/261275Kataishi, Rodrigo Ezequiel; The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences; Elsevier; Journal of Social Science Research Network; 1-2025; 1-311556-5068CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5022988info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.5022988info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:20Zoai:ri.conicet.gov.ar:11336/261275instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:21.282CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences |
title |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences |
spellingShingle |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences Kataishi, Rodrigo Ezequiel NLP MACHINE LEARNING INNOVATION TECHNOLOGICAL TRAJECTORY |
title_short |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences |
title_full |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences |
title_fullStr |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences |
title_full_unstemmed |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences |
title_sort |
The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences |
dc.creator.none.fl_str_mv |
Kataishi, Rodrigo Ezequiel |
author |
Kataishi, Rodrigo Ezequiel |
author_facet |
Kataishi, Rodrigo Ezequiel |
author_role |
author |
dc.subject.none.fl_str_mv |
NLP MACHINE LEARNING INNOVATION TECHNOLOGICAL TRAJECTORY |
topic |
NLP MACHINE LEARNING INNOVATION TECHNOLOGICAL TRAJECTORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.9 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility. Fil: Kataishi, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; Argentina |
description |
This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/261275 Kataishi, Rodrigo Ezequiel; The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences; Elsevier; Journal of Social Science Research Network; 1-2025; 1-31 1556-5068 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/261275 |
identifier_str_mv |
Kataishi, Rodrigo Ezequiel; The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences; Elsevier; Journal of Social Science Research Network; 1-2025; 1-31 1556-5068 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5022988 info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.5022988 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082664253095936 |
score |
13.22299 |