The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences

Autores
Kataishi, Rodrigo Ezequiel
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility.
Fil: Kataishi, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; Argentina
Materia
NLP
MACHINE LEARNING
INNOVATION
TECHNOLOGICAL TRAJECTORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/261275

id CONICETDig_7d48b692ec033d79087ec4d79c5c206f
oai_identifier_str oai:ri.conicet.gov.ar:11336/261275
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social SciencesKataishi, Rodrigo EzequielNLPMACHINE LEARNINGINNOVATIONTECHNOLOGICAL TRAJECTORYhttps://purl.org/becyt/ford/5.9https://purl.org/becyt/ford/5This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility.Fil: Kataishi, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; ArgentinaElsevier2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/261275Kataishi, Rodrigo Ezequiel; The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences; Elsevier; Journal of Social Science Research Network; 1-2025; 1-311556-5068CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5022988info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.5022988info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:20Zoai:ri.conicet.gov.ar:11336/261275instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:21.282CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
title The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
spellingShingle The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
Kataishi, Rodrigo Ezequiel
NLP
MACHINE LEARNING
INNOVATION
TECHNOLOGICAL TRAJECTORY
title_short The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
title_full The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
title_fullStr The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
title_full_unstemmed The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
title_sort The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences
dc.creator.none.fl_str_mv Kataishi, Rodrigo Ezequiel
author Kataishi, Rodrigo Ezequiel
author_facet Kataishi, Rodrigo Ezequiel
author_role author
dc.subject.none.fl_str_mv NLP
MACHINE LEARNING
INNOVATION
TECHNOLOGICAL TRAJECTORY
topic NLP
MACHINE LEARNING
INNOVATION
TECHNOLOGICAL TRAJECTORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/5.9
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility.
Fil: Kataishi, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; Argentina
description This paper examines the evolution and application of quantitative semantic analysis tools in social sciences, tracking their development from early statistical methods to contemporary large language models. The analysis demonstrates how computational advances have transformed qualitative research capabilities, enabling the systematic analysis of vast textual datasets while maintaining interpretative depth. The study presents a comprehensive review of key methodological approaches, including statistical analysis, topic modeling, semantic networks, and dimensionality reduction techniques, while examining their practical applications in social science research. Special attention is given to recent developments in natural language processing, particularly the emergence of transformer-based models and their impact on research methodologies. The paper provides a detailed typology of cases for applying machine learning strategies in social sciences, covering applications from sentiment analysis to cross-cultural studies. The research concludes by addressing methodological considerations and ethical implications for future research, emphasizing the importance of balancing technological innovation with research integrity and social responsibility.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/261275
Kataishi, Rodrigo Ezequiel; The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences; Elsevier; Journal of Social Science Research Network; 1-2025; 1-31
1556-5068
CONICET Digital
CONICET
url http://hdl.handle.net/11336/261275
identifier_str_mv Kataishi, Rodrigo Ezequiel; The Technological Trajectory of Semantic Analysis: A Historical-Methodological Review of NLP in Social Sciences; Elsevier; Journal of Social Science Research Network; 1-2025; 1-31
1556-5068
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5022988
info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.5022988
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082664253095936
score 13.22299