Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas

Autores
Melia, Lucas
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Nanoestructuras conformadas de semiconductores inorgánicos han comenzado a ser utilizadas en dispositivos fotovoltaicos emergentes ya que proveen oportunidades novedosas para el transporte de cargas en la nanoescala. Los semiconductores II-VI han llamado la atención en los últimos años no solo por su utilización como componente de una celda fotovoltaica, sino también debido a otras aplicaciones industriales como dispositivos luminiscentes y de alta frecuencia, circuitos integrados en optoelectrónica, filtros, detectores infrarrojos, visibles, de rayos X o gama. A su vez, producen un mínimo impacto ambiental por su no toxicidad y abundancia natural. Diversos dispositivos que utilizan semiconductores II-VI (como el ZnO) han mejorado su rendimiento al combinarse con una variedad de materiales activos. Adicionalmente, con el dopaje adecuado, han demostrado ser muy prometedores como fotocalizadores de alta estabilidad, eficientes y accesibles económicamente.El objetivo general del plan de trabajo es crecer diferentes nanoestructuras de semiconductores de los grupos II-VI mediante electrodeposición química (ED), variando la solución y otros parámetros con el objetivo de analizar la nanoestructura más apropiada para aplicaciones fotovoltaicas. La ED, como método de producción de películas delgadas, además de su sencillez y bajo costo, ofrece ventajas adicionales ya que el depósito puede realizarse sobre una gran área a baja temperatura y sin el requerimiento de un sistema de vacío. Se pueden utilizar soluciones acuosas y no acuosas y agregar agentes dopantes.La combinación de los semiconductores con grafeno, o derivados de éste como los GQDs, podrá emplearse en el diseño inteligente de heteroestructuras que permitan una sinergia entre los nanomateriales involucrados. Con estas combinaciones se pretende mejorar la eficiencia de las celdas solares a partir de la ampliación del rango de absorción solar y la transferencia de carga usando nanomateriales transparentes de espesor atómico como el grafeno y los GQDs.El tamaño, la estructura y la geometría tienen una injerencia directa en la eficiencia de las celdas solares y son variables que pueden modificarse experimentalmente a través de la electroquímica (temperatura de la solución, pH, etc.) y que a su vez tienen control sobre la nucleación y crecimiento de dichas nanoestructuras. Dado que las nanoestructuras ofrecen una alta relación superficie/volumen, pretendemos generar modificaciones de la superficie de las nanopartículas a fin de mejorar sus propiedades fotovoltaicas.Adicionalmente, como otra aplicación tecnológica se estudiará la posibilidad de degradación de compuestos como el azul de metileno utilizando semiconductores II-VI sintetizados a través de electrodeposición como material fotocatalítico. Se trabajará además con modelos matemáticos para poder comparar las experiencias de laboratorio con aquellas emuladas computacionalmente.
Carrera: Doctorado en Ingeniería Tipo de beca: Beca Doctoral Año de inicio de beca: 2022 Año de finalización de beca: 2027 Organismo: CONICET Apellido, Nombre del Director/a/e: Damonte, Laura Apellido, Nombre del Codirector/a/e: Ibañez, Francisco Lugar de desarrollo: Instituto de Física La Plata (IFLP) Áreas de conocimiento: Ingeniería en materiales
Facultad de Ingeniería
Materia
Cs. de los Materiales
Semiconductores Ii-vi
Grafeno
Energía solar
Electrodeposición
Ii-vi Semiconductors
Graphene
Solar energy
Electrodeposition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/145752

id SEDICI_0c79095eb4ee9515485dd0b34b514994
oai_identifier_str oai:sedici.unlp.edu.ar:10915/145752
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicasSemiconductor nanostructures II-VI combined with graphene (and derivatives) for technological usesMelia, LucasCs. de los MaterialesSemiconductores Ii-viGrafenoEnergía solarElectrodeposiciónIi-vi SemiconductorsGrapheneSolar energyElectrodepositionNanoestructuras conformadas de semiconductores inorgánicos han comenzado a ser utilizadas en dispositivos fotovoltaicos emergentes ya que proveen oportunidades novedosas para el transporte de cargas en la nanoescala. Los semiconductores II-VI han llamado la atención en los últimos años no solo por su utilización como componente de una celda fotovoltaica, sino también debido a otras aplicaciones industriales como dispositivos luminiscentes y de alta frecuencia, circuitos integrados en optoelectrónica, filtros, detectores infrarrojos, visibles, de rayos X o gama. A su vez, producen un mínimo impacto ambiental por su no toxicidad y abundancia natural. Diversos dispositivos que utilizan semiconductores II-VI (como el ZnO) han mejorado su rendimiento al combinarse con una variedad de materiales activos. Adicionalmente, con el dopaje adecuado, han demostrado ser muy prometedores como fotocalizadores de alta estabilidad, eficientes y accesibles económicamente.El objetivo general del plan de trabajo es crecer diferentes nanoestructuras de semiconductores de los grupos II-VI mediante electrodeposición química (ED), variando la solución y otros parámetros con el objetivo de analizar la nanoestructura más apropiada para aplicaciones fotovoltaicas. La ED, como método de producción de películas delgadas, además de su sencillez y bajo costo, ofrece ventajas adicionales ya que el depósito puede realizarse sobre una gran área a baja temperatura y sin el requerimiento de un sistema de vacío. Se pueden utilizar soluciones acuosas y no acuosas y agregar agentes dopantes.La combinación de los semiconductores con grafeno, o derivados de éste como los GQDs, podrá emplearse en el diseño inteligente de heteroestructuras que permitan una sinergia entre los nanomateriales involucrados. Con estas combinaciones se pretende mejorar la eficiencia de las celdas solares a partir de la ampliación del rango de absorción solar y la transferencia de carga usando nanomateriales transparentes de espesor atómico como el grafeno y los GQDs.El tamaño, la estructura y la geometría tienen una injerencia directa en la eficiencia de las celdas solares y son variables que pueden modificarse experimentalmente a través de la electroquímica (temperatura de la solución, pH, etc.) y que a su vez tienen control sobre la nucleación y crecimiento de dichas nanoestructuras. Dado que las nanoestructuras ofrecen una alta relación superficie/volumen, pretendemos generar modificaciones de la superficie de las nanopartículas a fin de mejorar sus propiedades fotovoltaicas.Adicionalmente, como otra aplicación tecnológica se estudiará la posibilidad de degradación de compuestos como el azul de metileno utilizando semiconductores II-VI sintetizados a través de electrodeposición como material fotocatalítico. Se trabajará además con modelos matemáticos para poder comparar las experiencias de laboratorio con aquellas emuladas computacionalmente.Carrera: Doctorado en Ingeniería Tipo de beca: Beca Doctoral Año de inicio de beca: 2022 Año de finalización de beca: 2027 Organismo: CONICET Apellido, Nombre del Director/a/e: Damonte, Laura Apellido, Nombre del Codirector/a/e: Ibañez, Francisco Lugar de desarrollo: Instituto de Física La Plata (IFLP) Áreas de conocimiento: Ingeniería en materialesFacultad de Ingeniería2022-11-23info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/145752spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:37:08Zoai:sedici.unlp.edu.ar:10915/145752Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:37:08.907SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
Semiconductor nanostructures II-VI combined with graphene (and derivatives) for technological uses
title Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
spellingShingle Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
Melia, Lucas
Cs. de los Materiales
Semiconductores Ii-vi
Grafeno
Energía solar
Electrodeposición
Ii-vi Semiconductors
Graphene
Solar energy
Electrodeposition
title_short Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
title_full Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
title_fullStr Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
title_full_unstemmed Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
title_sort Nanoestructuras de semiconductores II-VI combinados con grafeno (y derivados) para aplicaciones tecnológicas
dc.creator.none.fl_str_mv Melia, Lucas
author Melia, Lucas
author_facet Melia, Lucas
author_role author
dc.subject.none.fl_str_mv Cs. de los Materiales
Semiconductores Ii-vi
Grafeno
Energía solar
Electrodeposición
Ii-vi Semiconductors
Graphene
Solar energy
Electrodeposition
topic Cs. de los Materiales
Semiconductores Ii-vi
Grafeno
Energía solar
Electrodeposición
Ii-vi Semiconductors
Graphene
Solar energy
Electrodeposition
dc.description.none.fl_txt_mv Nanoestructuras conformadas de semiconductores inorgánicos han comenzado a ser utilizadas en dispositivos fotovoltaicos emergentes ya que proveen oportunidades novedosas para el transporte de cargas en la nanoescala. Los semiconductores II-VI han llamado la atención en los últimos años no solo por su utilización como componente de una celda fotovoltaica, sino también debido a otras aplicaciones industriales como dispositivos luminiscentes y de alta frecuencia, circuitos integrados en optoelectrónica, filtros, detectores infrarrojos, visibles, de rayos X o gama. A su vez, producen un mínimo impacto ambiental por su no toxicidad y abundancia natural. Diversos dispositivos que utilizan semiconductores II-VI (como el ZnO) han mejorado su rendimiento al combinarse con una variedad de materiales activos. Adicionalmente, con el dopaje adecuado, han demostrado ser muy prometedores como fotocalizadores de alta estabilidad, eficientes y accesibles económicamente.El objetivo general del plan de trabajo es crecer diferentes nanoestructuras de semiconductores de los grupos II-VI mediante electrodeposición química (ED), variando la solución y otros parámetros con el objetivo de analizar la nanoestructura más apropiada para aplicaciones fotovoltaicas. La ED, como método de producción de películas delgadas, además de su sencillez y bajo costo, ofrece ventajas adicionales ya que el depósito puede realizarse sobre una gran área a baja temperatura y sin el requerimiento de un sistema de vacío. Se pueden utilizar soluciones acuosas y no acuosas y agregar agentes dopantes.La combinación de los semiconductores con grafeno, o derivados de éste como los GQDs, podrá emplearse en el diseño inteligente de heteroestructuras que permitan una sinergia entre los nanomateriales involucrados. Con estas combinaciones se pretende mejorar la eficiencia de las celdas solares a partir de la ampliación del rango de absorción solar y la transferencia de carga usando nanomateriales transparentes de espesor atómico como el grafeno y los GQDs.El tamaño, la estructura y la geometría tienen una injerencia directa en la eficiencia de las celdas solares y son variables que pueden modificarse experimentalmente a través de la electroquímica (temperatura de la solución, pH, etc.) y que a su vez tienen control sobre la nucleación y crecimiento de dichas nanoestructuras. Dado que las nanoestructuras ofrecen una alta relación superficie/volumen, pretendemos generar modificaciones de la superficie de las nanopartículas a fin de mejorar sus propiedades fotovoltaicas.Adicionalmente, como otra aplicación tecnológica se estudiará la posibilidad de degradación de compuestos como el azul de metileno utilizando semiconductores II-VI sintetizados a través de electrodeposición como material fotocatalítico. Se trabajará además con modelos matemáticos para poder comparar las experiencias de laboratorio con aquellas emuladas computacionalmente.
Carrera: Doctorado en Ingeniería Tipo de beca: Beca Doctoral Año de inicio de beca: 2022 Año de finalización de beca: 2027 Organismo: CONICET Apellido, Nombre del Director/a/e: Damonte, Laura Apellido, Nombre del Codirector/a/e: Ibañez, Francisco Lugar de desarrollo: Instituto de Física La Plata (IFLP) Áreas de conocimiento: Ingeniería en materiales
Facultad de Ingeniería
description Nanoestructuras conformadas de semiconductores inorgánicos han comenzado a ser utilizadas en dispositivos fotovoltaicos emergentes ya que proveen oportunidades novedosas para el transporte de cargas en la nanoescala. Los semiconductores II-VI han llamado la atención en los últimos años no solo por su utilización como componente de una celda fotovoltaica, sino también debido a otras aplicaciones industriales como dispositivos luminiscentes y de alta frecuencia, circuitos integrados en optoelectrónica, filtros, detectores infrarrojos, visibles, de rayos X o gama. A su vez, producen un mínimo impacto ambiental por su no toxicidad y abundancia natural. Diversos dispositivos que utilizan semiconductores II-VI (como el ZnO) han mejorado su rendimiento al combinarse con una variedad de materiales activos. Adicionalmente, con el dopaje adecuado, han demostrado ser muy prometedores como fotocalizadores de alta estabilidad, eficientes y accesibles económicamente.El objetivo general del plan de trabajo es crecer diferentes nanoestructuras de semiconductores de los grupos II-VI mediante electrodeposición química (ED), variando la solución y otros parámetros con el objetivo de analizar la nanoestructura más apropiada para aplicaciones fotovoltaicas. La ED, como método de producción de películas delgadas, además de su sencillez y bajo costo, ofrece ventajas adicionales ya que el depósito puede realizarse sobre una gran área a baja temperatura y sin el requerimiento de un sistema de vacío. Se pueden utilizar soluciones acuosas y no acuosas y agregar agentes dopantes.La combinación de los semiconductores con grafeno, o derivados de éste como los GQDs, podrá emplearse en el diseño inteligente de heteroestructuras que permitan una sinergia entre los nanomateriales involucrados. Con estas combinaciones se pretende mejorar la eficiencia de las celdas solares a partir de la ampliación del rango de absorción solar y la transferencia de carga usando nanomateriales transparentes de espesor atómico como el grafeno y los GQDs.El tamaño, la estructura y la geometría tienen una injerencia directa en la eficiencia de las celdas solares y son variables que pueden modificarse experimentalmente a través de la electroquímica (temperatura de la solución, pH, etc.) y que a su vez tienen control sobre la nucleación y crecimiento de dichas nanoestructuras. Dado que las nanoestructuras ofrecen una alta relación superficie/volumen, pretendemos generar modificaciones de la superficie de las nanopartículas a fin de mejorar sus propiedades fotovoltaicas.Adicionalmente, como otra aplicación tecnológica se estudiará la posibilidad de degradación de compuestos como el azul de metileno utilizando semiconductores II-VI sintetizados a través de electrodeposición como material fotocatalítico. Se trabajará además con modelos matemáticos para poder comparar las experiencias de laboratorio con aquellas emuladas computacionalmente.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-23
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/145752
url http://sedici.unlp.edu.ar/handle/10915/145752
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616249032572928
score 13.070432