Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay
- Autores
- Massobrio, Renzo; Pías, Andrés; Vázquez, Nicolás; Nesmachnow, Sergio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This article addresses the problem of processing large volumes of historical GPS data from buses to compute quality-of-service metrics for urban transportation systems. We designed and implemented a solution to distribute the data processing on multiple processing units in a distributed computing infrastructure. For the experimental analysis we used historical data from Montevideo, Uruguay. The proposed solution scales properly when processing large volumes of input data, achieving a speedup of up to 22× when using 24 computing resources. As case studies, we used the historical data to compute the average speed of bus lines in Montevideo and identify troublesome locations, according to the delay and deviation of the times to reach each bus stop. Similar studies can be used by control authorities and policy makers to get an insight of the transportation system and improve the quality of service.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
map-reduce
big data
intelligent transportation systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56810
Ver los metadatos del registro completo
id |
SEDICI_0c4d8eb5f84b17e9aa144d2393fdf351 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56810 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, UruguayMassobrio, RenzoPías, AndrésVázquez, NicolásNesmachnow, SergioCiencias Informáticasmap-reducebig dataintelligent transportation systemsThis article addresses the problem of processing large volumes of historical GPS data from buses to compute quality-of-service metrics for urban transportation systems. We designed and implemented a solution to distribute the data processing on multiple processing units in a distributed computing infrastructure. For the experimental analysis we used historical data from Montevideo, Uruguay. The proposed solution scales properly when processing large volumes of input data, achieving a speedup of up to 22× when using 24 computing resources. As case studies, we used the historical data to compute the average speed of bus lines in Montevideo and identify troublesome locations, according to the delay and deviation of the times to reach each bus stop. Similar studies can be used by control authorities and policy makers to get an insight of the transportation system and improve the quality of service.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf41-54http://sedici.unlp.edu.ar/handle/10915/56810enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/AGRANDA-01.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7569info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:06:08Zoai:sedici.unlp.edu.ar:10915/56810Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:06:08.511SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
title |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
spellingShingle |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay Massobrio, Renzo Ciencias Informáticas map-reduce big data intelligent transportation systems |
title_short |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
title_full |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
title_fullStr |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
title_full_unstemmed |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
title_sort |
Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay |
dc.creator.none.fl_str_mv |
Massobrio, Renzo Pías, Andrés Vázquez, Nicolás Nesmachnow, Sergio |
author |
Massobrio, Renzo |
author_facet |
Massobrio, Renzo Pías, Andrés Vázquez, Nicolás Nesmachnow, Sergio |
author_role |
author |
author2 |
Pías, Andrés Vázquez, Nicolás Nesmachnow, Sergio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas map-reduce big data intelligent transportation systems |
topic |
Ciencias Informáticas map-reduce big data intelligent transportation systems |
dc.description.none.fl_txt_mv |
This article addresses the problem of processing large volumes of historical GPS data from buses to compute quality-of-service metrics for urban transportation systems. We designed and implemented a solution to distribute the data processing on multiple processing units in a distributed computing infrastructure. For the experimental analysis we used historical data from Montevideo, Uruguay. The proposed solution scales properly when processing large volumes of input data, achieving a speedup of up to 22× when using 24 computing resources. As case studies, we used the historical data to compute the average speed of bus lines in Montevideo and identify troublesome locations, according to the delay and deviation of the times to reach each bus stop. Similar studies can be used by control authorities and policy makers to get an insight of the transportation system and improve the quality of service. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
This article addresses the problem of processing large volumes of historical GPS data from buses to compute quality-of-service metrics for urban transportation systems. We designed and implemented a solution to distribute the data processing on multiple processing units in a distributed computing infrastructure. For the experimental analysis we used historical data from Montevideo, Uruguay. The proposed solution scales properly when processing large volumes of input data, achieving a speedup of up to 22× when using 24 computing resources. As case studies, we used the historical data to compute the average speed of bus lines in Montevideo and identify troublesome locations, according to the delay and deviation of the times to reach each bus stop. Similar studies can be used by control authorities and policy makers to get an insight of the transportation system and improve the quality of service. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56810 |
url |
http://sedici.unlp.edu.ar/handle/10915/56810 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/AGRANDA-01.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7569 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 41-54 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615932250423296 |
score |
13.070432 |