Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy

Autores
Bellomo, Guido; Bosyk, Gustavo Martín; Holik, Federico Hernán; Zozor, Steeve
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.
Facultad de Ciencias Exactas
Materia
Física
Quantum information
Qubits
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/78694

id SEDICI_0818d9f513e43bafbf4c5d6cf13d56ab
oai_identifier_str oai:sedici.unlp.edu.ar:10915/78694
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropyBellomo, GuidoBosyk, Gustavo MartínHolik, Federico HernánZozor, SteeveFísicaQuantum informationQubitsBased on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.Facultad de Ciencias Exactas2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/78694spainfo:eu-repo/semantics/altIdentifier/issn/2045-2322info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-017-13350-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:06:10Zoai:sedici.unlp.edu.ar:10915/78694Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:06:10.274SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
title Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
spellingShingle Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
Bellomo, Guido
Física
Quantum information
Qubits
title_short Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
title_full Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
title_fullStr Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
title_full_unstemmed Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
title_sort Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy
dc.creator.none.fl_str_mv Bellomo, Guido
Bosyk, Gustavo Martín
Holik, Federico Hernán
Zozor, Steeve
author Bellomo, Guido
author_facet Bellomo, Guido
Bosyk, Gustavo Martín
Holik, Federico Hernán
Zozor, Steeve
author_role author
author2 Bosyk, Gustavo Martín
Holik, Federico Hernán
Zozor, Steeve
author2_role author
author
author
dc.subject.none.fl_str_mv Física
Quantum information
Qubits
topic Física
Quantum information
Qubits
dc.description.none.fl_txt_mv Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.
Facultad de Ciencias Exactas
description Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/78694
url http://sedici.unlp.edu.ar/handle/10915/78694
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2045-2322
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-017-13350-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064116926513152
score 13.22299