Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits

Autores
Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; Niedzielski, Bethany; Yoder, Jonilyn L.; Sánchez, María José; Domínguez, Daniel; Gustavsson, Simon; Oliver, William D.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits.
Fil: Gramajo, Ana Laura. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Campbell, Dan. Massachusetts Institute of Technology; Estados Unidos
Fil: Kannan, Bharath. Massachusetts Institute of Technology; Estados Unidos
Fil: Kim, David K.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Melville, Alexander. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Niedzielski, Bethany. Massachusetts Institute of Technology; Estados Unidos
Fil: Yoder, Jonilyn L.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Sánchez, María José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Domínguez, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Gustavsson, Simon. Massachusetts Institute of Technology; Estados Unidos
Fil: Oliver, William D.. Massachusetts Institute of Technology; Estados Unidos
Materia
QUBITS
EMULATION
SUPERCONDUCTING
COHERENT
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146638

id CONICETDig_6639ea43439d723a8ff824625ef6d01f
oai_identifier_str oai:ri.conicet.gov.ar:11336/146638
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum Emulation of Coherent Backscattering in a System of Superconducting QubitsGramajo, Ana LauraCampbell, DanKannan, BharathKim, David K.Melville, AlexanderNiedzielski, BethanyYoder, Jonilyn L.Sánchez, María JoséDomínguez, DanielGustavsson, SimonOliver, William D.QUBITSEMULATIONSUPERCONDUCTINGCOHERENThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits.Fil: Gramajo, Ana Laura. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Campbell, Dan. Massachusetts Institute of Technology; Estados UnidosFil: Kannan, Bharath. Massachusetts Institute of Technology; Estados UnidosFil: Kim, David K.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados UnidosFil: Melville, Alexander. Massachusetts Institute of Technology. Lincoln Laboratory; Estados UnidosFil: Niedzielski, Bethany. Massachusetts Institute of Technology; Estados UnidosFil: Yoder, Jonilyn L.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados UnidosFil: Sánchez, María José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Domínguez, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gustavsson, Simon. Massachusetts Institute of Technology; Estados UnidosFil: Oliver, William D.. Massachusetts Institute of Technology; Estados UnidosAmerican Physical Society2020-07info:eu-repo/date/embargoEnd/2022-05-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146638Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; et al.; Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits; American Physical Society; Physical Review Applied; 14; 1; 7-2020; 1-142331-7019CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.14.014047info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.014047info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:52Zoai:ri.conicet.gov.ar:11336/146638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:52.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
title Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
spellingShingle Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
Gramajo, Ana Laura
QUBITS
EMULATION
SUPERCONDUCTING
COHERENT
title_short Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
title_full Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
title_fullStr Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
title_full_unstemmed Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
title_sort Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
dc.creator.none.fl_str_mv Gramajo, Ana Laura
Campbell, Dan
Kannan, Bharath
Kim, David K.
Melville, Alexander
Niedzielski, Bethany
Yoder, Jonilyn L.
Sánchez, María José
Domínguez, Daniel
Gustavsson, Simon
Oliver, William D.
author Gramajo, Ana Laura
author_facet Gramajo, Ana Laura
Campbell, Dan
Kannan, Bharath
Kim, David K.
Melville, Alexander
Niedzielski, Bethany
Yoder, Jonilyn L.
Sánchez, María José
Domínguez, Daniel
Gustavsson, Simon
Oliver, William D.
author_role author
author2 Campbell, Dan
Kannan, Bharath
Kim, David K.
Melville, Alexander
Niedzielski, Bethany
Yoder, Jonilyn L.
Sánchez, María José
Domínguez, Daniel
Gustavsson, Simon
Oliver, William D.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv QUBITS
EMULATION
SUPERCONDUCTING
COHERENT
topic QUBITS
EMULATION
SUPERCONDUCTING
COHERENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits.
Fil: Gramajo, Ana Laura. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Campbell, Dan. Massachusetts Institute of Technology; Estados Unidos
Fil: Kannan, Bharath. Massachusetts Institute of Technology; Estados Unidos
Fil: Kim, David K.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Melville, Alexander. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Niedzielski, Bethany. Massachusetts Institute of Technology; Estados Unidos
Fil: Yoder, Jonilyn L.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Sánchez, María José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Domínguez, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Gustavsson, Simon. Massachusetts Institute of Technology; Estados Unidos
Fil: Oliver, William D.. Massachusetts Institute of Technology; Estados Unidos
description In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
info:eu-repo/date/embargoEnd/2022-05-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146638
Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; et al.; Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits; American Physical Society; Physical Review Applied; 14; 1; 7-2020; 1-14
2331-7019
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146638
identifier_str_mv Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; et al.; Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits; American Physical Society; Physical Review Applied; 14; 1; 7-2020; 1-14
2331-7019
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.14.014047
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.014047
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270097451778048
score 13.13397