Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits
- Autores
- Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; Niedzielski, Bethany; Yoder, Jonilyn L.; Sánchez, María José; Domínguez, Daniel; Gustavsson, Simon; Oliver, William D.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits.
Fil: Gramajo, Ana Laura. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Campbell, Dan. Massachusetts Institute of Technology; Estados Unidos
Fil: Kannan, Bharath. Massachusetts Institute of Technology; Estados Unidos
Fil: Kim, David K.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Melville, Alexander. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Niedzielski, Bethany. Massachusetts Institute of Technology; Estados Unidos
Fil: Yoder, Jonilyn L.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos
Fil: Sánchez, María José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Domínguez, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Gustavsson, Simon. Massachusetts Institute of Technology; Estados Unidos
Fil: Oliver, William D.. Massachusetts Institute of Technology; Estados Unidos - Materia
-
QUBITS
EMULATION
SUPERCONDUCTING
COHERENT - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146638
Ver los metadatos del registro completo
id |
CONICETDig_6639ea43439d723a8ff824625ef6d01f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146638 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum Emulation of Coherent Backscattering in a System of Superconducting QubitsGramajo, Ana LauraCampbell, DanKannan, BharathKim, David K.Melville, AlexanderNiedzielski, BethanyYoder, Jonilyn L.Sánchez, María JoséDomínguez, DanielGustavsson, SimonOliver, William D.QUBITSEMULATIONSUPERCONDUCTINGCOHERENThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits.Fil: Gramajo, Ana Laura. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Campbell, Dan. Massachusetts Institute of Technology; Estados UnidosFil: Kannan, Bharath. Massachusetts Institute of Technology; Estados UnidosFil: Kim, David K.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados UnidosFil: Melville, Alexander. Massachusetts Institute of Technology. Lincoln Laboratory; Estados UnidosFil: Niedzielski, Bethany. Massachusetts Institute of Technology; Estados UnidosFil: Yoder, Jonilyn L.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados UnidosFil: Sánchez, María José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Domínguez, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gustavsson, Simon. Massachusetts Institute of Technology; Estados UnidosFil: Oliver, William D.. Massachusetts Institute of Technology; Estados UnidosAmerican Physical Society2020-07info:eu-repo/date/embargoEnd/2022-05-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146638Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; et al.; Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits; American Physical Society; Physical Review Applied; 14; 1; 7-2020; 1-142331-7019CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.14.014047info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.014047info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:52Zoai:ri.conicet.gov.ar:11336/146638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:52.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits |
title |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits |
spellingShingle |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits Gramajo, Ana Laura QUBITS EMULATION SUPERCONDUCTING COHERENT |
title_short |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits |
title_full |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits |
title_fullStr |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits |
title_full_unstemmed |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits |
title_sort |
Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits |
dc.creator.none.fl_str_mv |
Gramajo, Ana Laura Campbell, Dan Kannan, Bharath Kim, David K. Melville, Alexander Niedzielski, Bethany Yoder, Jonilyn L. Sánchez, María José Domínguez, Daniel Gustavsson, Simon Oliver, William D. |
author |
Gramajo, Ana Laura |
author_facet |
Gramajo, Ana Laura Campbell, Dan Kannan, Bharath Kim, David K. Melville, Alexander Niedzielski, Bethany Yoder, Jonilyn L. Sánchez, María José Domínguez, Daniel Gustavsson, Simon Oliver, William D. |
author_role |
author |
author2 |
Campbell, Dan Kannan, Bharath Kim, David K. Melville, Alexander Niedzielski, Bethany Yoder, Jonilyn L. Sánchez, María José Domínguez, Daniel Gustavsson, Simon Oliver, William D. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
QUBITS EMULATION SUPERCONDUCTING COHERENT |
topic |
QUBITS EMULATION SUPERCONDUCTING COHERENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits. Fil: Gramajo, Ana Laura. Massachusetts Institute of Technology; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Campbell, Dan. Massachusetts Institute of Technology; Estados Unidos Fil: Kannan, Bharath. Massachusetts Institute of Technology; Estados Unidos Fil: Kim, David K.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos Fil: Melville, Alexander. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos Fil: Niedzielski, Bethany. Massachusetts Institute of Technology; Estados Unidos Fil: Yoder, Jonilyn L.. Massachusetts Institute of Technology. Lincoln Laboratory; Estados Unidos Fil: Sánchez, María José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Domínguez, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Gustavsson, Simon. Massachusetts Institute of Technology; Estados Unidos Fil: Oliver, William D.. Massachusetts Institute of Technology; Estados Unidos |
description |
In condensed matter systems, coherent backscattering and quantum interference in the presence of time-reversal symmetry lead to well-known phenomena, such as weak localization (WL) and universal conductance fluctuations (UCFs). Here we use multipass Landau-Zener transitions at the avoided crossing of a highly coherent superconducting qubit to emulate these phenomena. The average and standard deviations of the qubit transition rate exhibit a dip and peak when the driving waveform is time-reversal symmetric, analogous to WL and UCFs, respectively. The higher coherence of this qubit enabled the realization of both effects, in contrast to the earlier work by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], who successfully emulated UCFs, but did not observe WL. This demonstration illustrates the use of nonadiabatic control to implement quantum emulation with superconducting qubits. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 info:eu-repo/date/embargoEnd/2022-05-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146638 Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; et al.; Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits; American Physical Society; Physical Review Applied; 14; 1; 7-2020; 1-14 2331-7019 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146638 |
identifier_str_mv |
Gramajo, Ana Laura; Campbell, Dan; Kannan, Bharath; Kim, David K.; Melville, Alexander; et al.; Quantum Emulation of Coherent Backscattering in a System of Superconducting Qubits; American Physical Society; Physical Review Applied; 14; 1; 7-2020; 1-14 2331-7019 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.14.014047 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.014047 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270097451778048 |
score |
13.13397 |