Approximate gradient projected condition in multiobjective optimization
- Autores
- Ramos, Alberto; Sánchez, María Daniela; Schuverdt, María Laura
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions.
Facultad de Ingeniería - Materia
-
Matemática
Sequential optimality conditions
Multiobjective problems
Fritz-John conditions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/81899
Ver los metadatos del registro completo
id |
SEDICI_068ef49d1980665575a20312f77f06cd |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/81899 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Approximate gradient projected condition in multiobjective optimizationRamos, AlbertoSánchez, María DanielaSchuverdt, María LauraMatemáticaSequential optimality conditionsMultiobjective problemsFritz-John conditionsIn this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions.Facultad de Ingeniería2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/81899enginfo:eu-repo/semantics/altIdentifier/issn/2314-3282info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:36Zoai:sedici.unlp.edu.ar:10915/81899Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:36.681SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Approximate gradient projected condition in multiobjective optimization |
title |
Approximate gradient projected condition in multiobjective optimization |
spellingShingle |
Approximate gradient projected condition in multiobjective optimization Ramos, Alberto Matemática Sequential optimality conditions Multiobjective problems Fritz-John conditions |
title_short |
Approximate gradient projected condition in multiobjective optimization |
title_full |
Approximate gradient projected condition in multiobjective optimization |
title_fullStr |
Approximate gradient projected condition in multiobjective optimization |
title_full_unstemmed |
Approximate gradient projected condition in multiobjective optimization |
title_sort |
Approximate gradient projected condition in multiobjective optimization |
dc.creator.none.fl_str_mv |
Ramos, Alberto Sánchez, María Daniela Schuverdt, María Laura |
author |
Ramos, Alberto |
author_facet |
Ramos, Alberto Sánchez, María Daniela Schuverdt, María Laura |
author_role |
author |
author2 |
Sánchez, María Daniela Schuverdt, María Laura |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Matemática Sequential optimality conditions Multiobjective problems Fritz-John conditions |
topic |
Matemática Sequential optimality conditions Multiobjective problems Fritz-John conditions |
dc.description.none.fl_txt_mv |
In this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions. Facultad de Ingeniería |
description |
In this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/81899 |
url |
http://sedici.unlp.edu.ar/handle/10915/81899 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2314-3282 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260348709634048 |
score |
13.13397 |