Approximate gradient projected condition in multiobjective optimization

Autores
Ramos, Alberto; Sánchez, María Daniela; Schuverdt, María Laura
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions.
Facultad de Ingeniería
Materia
Matemática
Sequential optimality conditions
Multiobjective problems
Fritz-John conditions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/81899

id SEDICI_068ef49d1980665575a20312f77f06cd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/81899
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Approximate gradient projected condition in multiobjective optimizationRamos, AlbertoSánchez, María DanielaSchuverdt, María LauraMatemáticaSequential optimality conditionsMultiobjective problemsFritz-John conditionsIn this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions.Facultad de Ingeniería2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/81899enginfo:eu-repo/semantics/altIdentifier/issn/2314-3282info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:36Zoai:sedici.unlp.edu.ar:10915/81899Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:36.681SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Approximate gradient projected condition in multiobjective optimization
title Approximate gradient projected condition in multiobjective optimization
spellingShingle Approximate gradient projected condition in multiobjective optimization
Ramos, Alberto
Matemática
Sequential optimality conditions
Multiobjective problems
Fritz-John conditions
title_short Approximate gradient projected condition in multiobjective optimization
title_full Approximate gradient projected condition in multiobjective optimization
title_fullStr Approximate gradient projected condition in multiobjective optimization
title_full_unstemmed Approximate gradient projected condition in multiobjective optimization
title_sort Approximate gradient projected condition in multiobjective optimization
dc.creator.none.fl_str_mv Ramos, Alberto
Sánchez, María Daniela
Schuverdt, María Laura
author Ramos, Alberto
author_facet Ramos, Alberto
Sánchez, María Daniela
Schuverdt, María Laura
author_role author
author2 Sánchez, María Daniela
Schuverdt, María Laura
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Sequential optimality conditions
Multiobjective problems
Fritz-John conditions
topic Matemática
Sequential optimality conditions
Multiobjective problems
Fritz-John conditions
dc.description.none.fl_txt_mv In this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions.
Facultad de Ingeniería
description In this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8] property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local weak Pareto point and we study, under convex assumptions, sufficient conditions.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/81899
url http://sedici.unlp.edu.ar/handle/10915/81899
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2314-3282
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260348709634048
score 13.13397