Multiobjective multicast routing with Ant Colony Optimization
- Autores
- Pinto, Diego; Barán, Benjamín
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This work presents a multiobjective algorithm for multicast traffic engineering. The proposed algorithm is a new version of MultiObjective Ant Colony System (MOACS), based on Ant Colony Optimization (ACO). The proposed MOACS simultaneously optimizes the maximum link utilization, the cost of the multicast tree, the averages delay and the maximum endtoend delay. In this way, a set of optimal solutions, known as Pareto set is calculated in only one run of the algorithm, without a priori restrictions. Experimental results obtained with the proposed MOACS were compared to a recently published Multiobjective Multicast Algorithm (MMA), showing a promising performance advantage for multicast traffic engineering.
5th IFIP International Conference on Network Control & Engineering for QoS, Security and Mobility
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
MultiObjective Ant Colony System (MOACS)
Multiobjective Multicast Algorithm (MMA)
Network Protocols
Internet (e.g., TCP/IP)
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24116
Ver los metadatos del registro completo
id |
SEDICI_d116fecf1af400d851e56c90363b4244 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24116 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Multiobjective multicast routing with Ant Colony OptimizationPinto, DiegoBarán, BenjamínCiencias InformáticasMultiObjective Ant Colony System (MOACS)Multiobjective Multicast Algorithm (MMA)Network ProtocolsInternet (e.g., TCP/IP)AlgorithmsThis work presents a multiobjective algorithm for multicast traffic engineering. The proposed algorithm is a new version of MultiObjective Ant Colony System (MOACS), based on Ant Colony Optimization (ACO). The proposed MOACS simultaneously optimizes the maximum link utilization, the cost of the multicast tree, the averages delay and the maximum endtoend delay. In this way, a set of optimal solutions, known as Pareto set is calculated in only one run of the algorithm, without a priori restrictions. Experimental results obtained with the proposed MOACS were compared to a recently published Multiobjective Multicast Algorithm (MMA), showing a promising performance advantage for multicast traffic engineering.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24116enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34825-5info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:30Zoai:sedici.unlp.edu.ar:10915/24116Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:30.832SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Multiobjective multicast routing with Ant Colony Optimization |
title |
Multiobjective multicast routing with Ant Colony Optimization |
spellingShingle |
Multiobjective multicast routing with Ant Colony Optimization Pinto, Diego Ciencias Informáticas MultiObjective Ant Colony System (MOACS) Multiobjective Multicast Algorithm (MMA) Network Protocols Internet (e.g., TCP/IP) Algorithms |
title_short |
Multiobjective multicast routing with Ant Colony Optimization |
title_full |
Multiobjective multicast routing with Ant Colony Optimization |
title_fullStr |
Multiobjective multicast routing with Ant Colony Optimization |
title_full_unstemmed |
Multiobjective multicast routing with Ant Colony Optimization |
title_sort |
Multiobjective multicast routing with Ant Colony Optimization |
dc.creator.none.fl_str_mv |
Pinto, Diego Barán, Benjamín |
author |
Pinto, Diego |
author_facet |
Pinto, Diego Barán, Benjamín |
author_role |
author |
author2 |
Barán, Benjamín |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas MultiObjective Ant Colony System (MOACS) Multiobjective Multicast Algorithm (MMA) Network Protocols Internet (e.g., TCP/IP) Algorithms |
topic |
Ciencias Informáticas MultiObjective Ant Colony System (MOACS) Multiobjective Multicast Algorithm (MMA) Network Protocols Internet (e.g., TCP/IP) Algorithms |
dc.description.none.fl_txt_mv |
This work presents a multiobjective algorithm for multicast traffic engineering. The proposed algorithm is a new version of MultiObjective Ant Colony System (MOACS), based on Ant Colony Optimization (ACO). The proposed MOACS simultaneously optimizes the maximum link utilization, the cost of the multicast tree, the averages delay and the maximum endtoend delay. In this way, a set of optimal solutions, known as Pareto set is calculated in only one run of the algorithm, without a priori restrictions. Experimental results obtained with the proposed MOACS were compared to a recently published Multiobjective Multicast Algorithm (MMA), showing a promising performance advantage for multicast traffic engineering. 5th IFIP International Conference on Network Control & Engineering for QoS, Security and Mobility Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This work presents a multiobjective algorithm for multicast traffic engineering. The proposed algorithm is a new version of MultiObjective Ant Colony System (MOACS), based on Ant Colony Optimization (ACO). The proposed MOACS simultaneously optimizes the maximum link utilization, the cost of the multicast tree, the averages delay and the maximum endtoend delay. In this way, a set of optimal solutions, known as Pareto set is calculated in only one run of the algorithm, without a priori restrictions. Experimental results obtained with the proposed MOACS were compared to a recently published Multiobjective Multicast Algorithm (MMA), showing a promising performance advantage for multicast traffic engineering. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24116 |
url |
http://sedici.unlp.edu.ar/handle/10915/24116 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34825-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260124254601216 |
score |
13.13397 |