Nuevas estrategias para la inversión sparse de datos sísmicos prestack
- Autores
- Pérez, Daniel Omar
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Velis, Danilo Rubén
Sacchi, Mauricio D.
Gauzellino, Patricia Mercedes
Soldo, Juan
Draganov, Deyan - Descripción
- Uno de los objetivos centrales de la inversión de datos sísmicos prestack consiste en determinar contrastes entre las propiedades físicas de las rocas del subsuelo a partir de la información contenida en la variación en función del ángulo de incidencia de las amplitudes de las ondas sísmicas reflejadas en las interfaces geológicas. La inversión de datos sísmicos prestack es un problema mal planteado y mal condicionado, en el sentido de que pequeñas cantidades de ruido en el dato llevan a grandes inestabilidades en las soluciones estimadas. Además, debido a la naturaleza de los datos observados, que son ruidosos, incompletos y de banda limitada, coexiste el problema de la no-unicidad de las soluciones. Dichos problemas apremian la utilización de regularizaciones y restricciones con el fin de estabilizar el proceso de inversión y promover al mismo tiempo soluciones con alguna característica deseada. Las soluciones ralas, o sparse, son deseables debido a que permiten obtener reflectores bien definidos y de esa forma superar el problema de la baja resolución observada en las soluciones obtenidas por medio de métodos de inversión convencionales. En este trabajo de tesis presentamos tres nuevas estrategias basadas en la utilización de diferentes regularizaciones que estabilizan el problema de inversión y promueven soluciones sparse a partir de datos sísmicos prestack. En la primera estrategia se procede a estimar soluciones sub-óptimas del problema de inversión regularizado mediante la norma L0 por medio de la utilización del algoritmo de optimización global Very Fast Simulated Annealing (VFSA). La segunda estrategia consta de dos etapas: primero se resuelve el problema de inversión regularizado mediante la norma L1 por medio de un eficiente algoritmo de optimización conocido como Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) y luego se realiza un paso correctivo de las amplitudes estimadas utilizando mínimos cuadrados. Estas dos primeras estrategias permiten estimar con éxito soluciones sparse utilizando la aproximación de Shuey de dos términos, modelo que describe la variación con el ángulo de incidencia de los coeficientes de reflexión sísmica. La tercera estrategia utiliza como regularización la norma L1,2, permitiendo incorporar información a priori por medio de matrices de covarianza o de escala. En este caso se estiman soluciones sparse de los parámetros de la aproximación de Aki & Richards de tres términos y, si la información a priori disponible es adecuada, es posible obtener también una estimación de tipo blocky de los parámetros elásticos del subsuelo.
Doctor en Geofísica
Universidad Nacional de La Plata
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Geofísica
Ciencias Astronómicas
inversión sísmica
prestack
sparse
blocky - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/50387
Ver los metadatos del registro completo
id |
SEDICI_057a9e4b5828461d1a496470ef2a482f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/50387 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Nuevas estrategias para la inversión sparse de datos sísmicos prestackPérez, Daniel OmarGeofísicaCiencias Astronómicasinversión sísmicaprestacksparseblockyUno de los objetivos centrales de la inversión de datos sísmicos prestack consiste en determinar contrastes entre las propiedades físicas de las rocas del subsuelo a partir de la información contenida en la variación en función del ángulo de incidencia de las amplitudes de las ondas sísmicas reflejadas en las interfaces geológicas. La inversión de datos sísmicos prestack es un problema mal planteado y mal condicionado, en el sentido de que pequeñas cantidades de ruido en el dato llevan a grandes inestabilidades en las soluciones estimadas. Además, debido a la naturaleza de los datos observados, que son ruidosos, incompletos y de banda limitada, coexiste el problema de la no-unicidad de las soluciones. Dichos problemas apremian la utilización de regularizaciones y restricciones con el fin de estabilizar el proceso de inversión y promover al mismo tiempo soluciones con alguna característica deseada. Las soluciones ralas, o sparse, son deseables debido a que permiten obtener reflectores bien definidos y de esa forma superar el problema de la baja resolución observada en las soluciones obtenidas por medio de métodos de inversión convencionales. En este trabajo de tesis presentamos tres nuevas estrategias basadas en la utilización de diferentes regularizaciones que estabilizan el problema de inversión y promueven soluciones sparse a partir de datos sísmicos prestack. En la primera estrategia se procede a estimar soluciones sub-óptimas del problema de inversión regularizado mediante la norma L<sub>0</sub> por medio de la utilización del algoritmo de optimización global Very Fast Simulated Annealing (VFSA). La segunda estrategia consta de dos etapas: primero se resuelve el problema de inversión regularizado mediante la norma L<sub>1</sub> por medio de un eficiente algoritmo de optimización conocido como Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) y luego se realiza un paso correctivo de las amplitudes estimadas utilizando mínimos cuadrados. Estas dos primeras estrategias permiten estimar con éxito soluciones sparse utilizando la aproximación de Shuey de dos términos, modelo que describe la variación con el ángulo de incidencia de los coeficientes de reflexión sísmica. La tercera estrategia utiliza como regularización la norma L<sub>1,2</sub>, permitiendo incorporar información a priori por medio de matrices de covarianza o de escala. En este caso se estiman soluciones sparse de los parámetros de la aproximación de Aki & Richards de tres términos y, si la información a priori disponible es adecuada, es posible obtener también una estimación de tipo blocky de los parámetros elásticos del subsuelo.Doctor en GeofísicaUniversidad Nacional de La PlataFacultad de Ciencias Astronómicas y GeofísicasVelis, Danilo RubénSacchi, Mauricio D.Gauzellino, Patricia MercedesSoldo, JuanDraganov, Deyan2015-04-24info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/50387https://doi.org/10.35537/10915/50387spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:03:56Zoai:sedici.unlp.edu.ar:10915/50387Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:03:57.045SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack |
title |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack |
spellingShingle |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack Pérez, Daniel Omar Geofísica Ciencias Astronómicas inversión sísmica prestack sparse blocky |
title_short |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack |
title_full |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack |
title_fullStr |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack |
title_full_unstemmed |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack |
title_sort |
Nuevas estrategias para la inversión sparse de datos sísmicos prestack |
dc.creator.none.fl_str_mv |
Pérez, Daniel Omar |
author |
Pérez, Daniel Omar |
author_facet |
Pérez, Daniel Omar |
author_role |
author |
dc.contributor.none.fl_str_mv |
Velis, Danilo Rubén Sacchi, Mauricio D. Gauzellino, Patricia Mercedes Soldo, Juan Draganov, Deyan |
dc.subject.none.fl_str_mv |
Geofísica Ciencias Astronómicas inversión sísmica prestack sparse blocky |
topic |
Geofísica Ciencias Astronómicas inversión sísmica prestack sparse blocky |
dc.description.none.fl_txt_mv |
Uno de los objetivos centrales de la inversión de datos sísmicos prestack consiste en determinar contrastes entre las propiedades físicas de las rocas del subsuelo a partir de la información contenida en la variación en función del ángulo de incidencia de las amplitudes de las ondas sísmicas reflejadas en las interfaces geológicas. La inversión de datos sísmicos prestack es un problema mal planteado y mal condicionado, en el sentido de que pequeñas cantidades de ruido en el dato llevan a grandes inestabilidades en las soluciones estimadas. Además, debido a la naturaleza de los datos observados, que son ruidosos, incompletos y de banda limitada, coexiste el problema de la no-unicidad de las soluciones. Dichos problemas apremian la utilización de regularizaciones y restricciones con el fin de estabilizar el proceso de inversión y promover al mismo tiempo soluciones con alguna característica deseada. Las soluciones ralas, o sparse, son deseables debido a que permiten obtener reflectores bien definidos y de esa forma superar el problema de la baja resolución observada en las soluciones obtenidas por medio de métodos de inversión convencionales. En este trabajo de tesis presentamos tres nuevas estrategias basadas en la utilización de diferentes regularizaciones que estabilizan el problema de inversión y promueven soluciones sparse a partir de datos sísmicos prestack. En la primera estrategia se procede a estimar soluciones sub-óptimas del problema de inversión regularizado mediante la norma L<sub>0</sub> por medio de la utilización del algoritmo de optimización global Very Fast Simulated Annealing (VFSA). La segunda estrategia consta de dos etapas: primero se resuelve el problema de inversión regularizado mediante la norma L<sub>1</sub> por medio de un eficiente algoritmo de optimización conocido como Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) y luego se realiza un paso correctivo de las amplitudes estimadas utilizando mínimos cuadrados. Estas dos primeras estrategias permiten estimar con éxito soluciones sparse utilizando la aproximación de Shuey de dos términos, modelo que describe la variación con el ángulo de incidencia de los coeficientes de reflexión sísmica. La tercera estrategia utiliza como regularización la norma L<sub>1,2</sub>, permitiendo incorporar información a priori por medio de matrices de covarianza o de escala. En este caso se estiman soluciones sparse de los parámetros de la aproximación de Aki & Richards de tres términos y, si la información a priori disponible es adecuada, es posible obtener también una estimación de tipo blocky de los parámetros elásticos del subsuelo. Doctor en Geofísica Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas |
description |
Uno de los objetivos centrales de la inversión de datos sísmicos prestack consiste en determinar contrastes entre las propiedades físicas de las rocas del subsuelo a partir de la información contenida en la variación en función del ángulo de incidencia de las amplitudes de las ondas sísmicas reflejadas en las interfaces geológicas. La inversión de datos sísmicos prestack es un problema mal planteado y mal condicionado, en el sentido de que pequeñas cantidades de ruido en el dato llevan a grandes inestabilidades en las soluciones estimadas. Además, debido a la naturaleza de los datos observados, que son ruidosos, incompletos y de banda limitada, coexiste el problema de la no-unicidad de las soluciones. Dichos problemas apremian la utilización de regularizaciones y restricciones con el fin de estabilizar el proceso de inversión y promover al mismo tiempo soluciones con alguna característica deseada. Las soluciones ralas, o sparse, son deseables debido a que permiten obtener reflectores bien definidos y de esa forma superar el problema de la baja resolución observada en las soluciones obtenidas por medio de métodos de inversión convencionales. En este trabajo de tesis presentamos tres nuevas estrategias basadas en la utilización de diferentes regularizaciones que estabilizan el problema de inversión y promueven soluciones sparse a partir de datos sísmicos prestack. En la primera estrategia se procede a estimar soluciones sub-óptimas del problema de inversión regularizado mediante la norma L<sub>0</sub> por medio de la utilización del algoritmo de optimización global Very Fast Simulated Annealing (VFSA). La segunda estrategia consta de dos etapas: primero se resuelve el problema de inversión regularizado mediante la norma L<sub>1</sub> por medio de un eficiente algoritmo de optimización conocido como Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) y luego se realiza un paso correctivo de las amplitudes estimadas utilizando mínimos cuadrados. Estas dos primeras estrategias permiten estimar con éxito soluciones sparse utilizando la aproximación de Shuey de dos términos, modelo que describe la variación con el ángulo de incidencia de los coeficientes de reflexión sísmica. La tercera estrategia utiliza como regularización la norma L<sub>1,2</sub>, permitiendo incorporar información a priori por medio de matrices de covarianza o de escala. En este caso se estiman soluciones sparse de los parámetros de la aproximación de Aki & Richards de tres términos y, si la información a priori disponible es adecuada, es posible obtener también una estimación de tipo blocky de los parámetros elásticos del subsuelo. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/50387 https://doi.org/10.35537/10915/50387 |
url |
http://sedici.unlp.edu.ar/handle/10915/50387 https://doi.org/10.35537/10915/50387 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615907794485248 |
score |
13.070432 |