Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as disp...

Autores
Iborra, Agustín; Díaz, Gisela; López, Daniel; Giussi, Juan Martín; Azzaroni, Omar
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The use of amphiphilic macrosurfactants as emulsifying agents has shown to have higher efficiency than that of low molecular weight surfactants. Compared to traditional surfactants, polymeric surfactants have lower critical micelle concentrations and lower diffusion coefficients. In this paper, we present a well defined copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate, prepared by solution radical copolymerization. The product was characterized by NMR and FTIR spectroscopies and the weight-average molecular weight and polydispersity index were analyzed by SEC. The thermal transitions and decomposition temperatures of the copolymers were determined by DSC and TGA, respectively. Due to the hydrophobic and hydrophilic nature of the monomer units, emulsification studies were performed. DLS experiments showed different sizes of the formed micelles depending on solvent polarity due to polymer-polymer or polymer-solvent interactions. Rheological characterization was undertaken to study the viscoelastic properties of the dispersed systems. Finally, two types of experiments to evaluate the polymer abilities as surfactant have been carried out. Firstly, the amphiphilic characteristics of this material allowed the incorporation of small amounts of an organic solvent in water forming only one phase, as well as the incorporation of small amounts of water in the organic solvent forming an emulsified phase. Then, the amphiphilic properties of this macrosurfactant have been fully exploited in order to form highly stable dispersions of carbon nanotubes in water.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Química
Copolymer
Carbon nanotubes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/103529

id SEDICI_03a31f32e0dce8e2a8404b73b3fe06f5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/103529
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubesIborra, AgustínDíaz, GiselaLópez, DanielGiussi, Juan MartínAzzaroni, OmarQuímicaCopolymerCarbon nanotubesThe use of amphiphilic macrosurfactants as emulsifying agents has shown to have higher efficiency than that of low molecular weight surfactants. Compared to traditional surfactants, polymeric surfactants have lower critical micelle concentrations and lower diffusion coefficients. In this paper, we present a well defined copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate, prepared by solution radical copolymerization. The product was characterized by NMR and FTIR spectroscopies and the weight-average molecular weight and polydispersity index were analyzed by SEC. The thermal transitions and decomposition temperatures of the copolymers were determined by DSC and TGA, respectively. Due to the hydrophobic and hydrophilic nature of the monomer units, emulsification studies were performed. DLS experiments showed different sizes of the formed micelles depending on solvent polarity due to polymer-polymer or polymer-solvent interactions. Rheological characterization was undertaken to study the viscoelastic properties of the dispersed systems. Finally, two types of experiments to evaluate the polymer abilities as surfactant have been carried out. Firstly, the amphiphilic characteristics of this material allowed the incorporation of small amounts of an organic solvent in water forming only one phase, as well as the incorporation of small amounts of water in the organic solvent forming an emulsified phase. Then, the amphiphilic properties of this macrosurfactant have been fully exploited in order to form highly stable dispersions of carbon nanotubes in water.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf308-317http://sedici.unlp.edu.ar/handle/10915/103529enginfo:eu-repo/semantics/altIdentifier/issn/0014-3057info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eurpolymj.2016.12.027info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:28Zoai:sedici.unlp.edu.ar:10915/103529Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:29.274SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
title Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
spellingShingle Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
Iborra, Agustín
Química
Copolymer
Carbon nanotubes
title_short Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
title_full Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
title_fullStr Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
title_full_unstemmed Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
title_sort Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes
dc.creator.none.fl_str_mv Iborra, Agustín
Díaz, Gisela
López, Daniel
Giussi, Juan Martín
Azzaroni, Omar
author Iborra, Agustín
author_facet Iborra, Agustín
Díaz, Gisela
López, Daniel
Giussi, Juan Martín
Azzaroni, Omar
author_role author
author2 Díaz, Gisela
López, Daniel
Giussi, Juan Martín
Azzaroni, Omar
author2_role author
author
author
author
dc.subject.none.fl_str_mv Química
Copolymer
Carbon nanotubes
topic Química
Copolymer
Carbon nanotubes
dc.description.none.fl_txt_mv The use of amphiphilic macrosurfactants as emulsifying agents has shown to have higher efficiency than that of low molecular weight surfactants. Compared to traditional surfactants, polymeric surfactants have lower critical micelle concentrations and lower diffusion coefficients. In this paper, we present a well defined copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate, prepared by solution radical copolymerization. The product was characterized by NMR and FTIR spectroscopies and the weight-average molecular weight and polydispersity index were analyzed by SEC. The thermal transitions and decomposition temperatures of the copolymers were determined by DSC and TGA, respectively. Due to the hydrophobic and hydrophilic nature of the monomer units, emulsification studies were performed. DLS experiments showed different sizes of the formed micelles depending on solvent polarity due to polymer-polymer or polymer-solvent interactions. Rheological characterization was undertaken to study the viscoelastic properties of the dispersed systems. Finally, two types of experiments to evaluate the polymer abilities as surfactant have been carried out. Firstly, the amphiphilic characteristics of this material allowed the incorporation of small amounts of an organic solvent in water forming only one phase, as well as the incorporation of small amounts of water in the organic solvent forming an emulsified phase. Then, the amphiphilic properties of this macrosurfactant have been fully exploited in order to form highly stable dispersions of carbon nanotubes in water.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description The use of amphiphilic macrosurfactants as emulsifying agents has shown to have higher efficiency than that of low molecular weight surfactants. Compared to traditional surfactants, polymeric surfactants have lower critical micelle concentrations and lower diffusion coefficients. In this paper, we present a well defined copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate, prepared by solution radical copolymerization. The product was characterized by NMR and FTIR spectroscopies and the weight-average molecular weight and polydispersity index were analyzed by SEC. The thermal transitions and decomposition temperatures of the copolymers were determined by DSC and TGA, respectively. Due to the hydrophobic and hydrophilic nature of the monomer units, emulsification studies were performed. DLS experiments showed different sizes of the formed micelles depending on solvent polarity due to polymer-polymer or polymer-solvent interactions. Rheological characterization was undertaken to study the viscoelastic properties of the dispersed systems. Finally, two types of experiments to evaluate the polymer abilities as surfactant have been carried out. Firstly, the amphiphilic characteristics of this material allowed the incorporation of small amounts of an organic solvent in water forming only one phase, as well as the incorporation of small amounts of water in the organic solvent forming an emulsified phase. Then, the amphiphilic properties of this macrosurfactant have been fully exploited in order to form highly stable dispersions of carbon nanotubes in water.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/103529
url http://sedici.unlp.edu.ar/handle/10915/103529
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0014-3057
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eurpolymj.2016.12.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
308-317
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616100878221312
score 13.070432