L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery

Autores
Salemme, Silvia Verónica; Rebolledo, Alejandro; Speroni Aguirre, Francisco; Petruccelli, Silvana; Milesi, María Verónica
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The electrophysiological and pharmacological properties of Ca 2+ current (I Ca ) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca 2+ , depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I Ca which activated at membrane potentials more positive than -50 mV and exhibited a maximum current density in a range of 10-20 mV. Steady-state inactivation protocols using a V test of 10 mV gave a voltage at one-half inactivation and a slope factor of -35.6 mV and 9.5 mV, respectively. Nifedipine (1 μM), an L-type Ca 2+ channels antagonist, completely inhibited I Ca , while the L-type Ca 2+ channels agonist Bay-K 8644 (1 μM) significantly increased I Ca amplitude. Moreover, the selective blocker of P-/Q-type Ca 2+ channels ω-agatoxin IVA partially blocked I Ca (about 40 % inhibition at +20 mV by 20 nM). These pharmacological results suggest that L- and P-/Q-type Ca 2+ channels, both nifedipine-sensitive, underlie the I Ca registered using low extracellular Ca 2+ . The presence of the P-/Q-type Ca 2+ channels was confirmed by immunoblot analysis. When I Ca was recorded in a high concentration (30 mM) of extracellular Ca 2+ or Ba 2+ as current carrier, it was evident the presence of a nifedipine-insensitive component which completely inactivated during the course of the voltage-step (75 ms) at all potentials tested, and was blocked by the T-type Ca 2+ channels blocker mibefradil (10 μM). Summarizing, this work shows for the first time the electrophysiological and pharmacological properties of voltage-activated Ca 2+ currents in human umbilical artery smooth muscle cells.
Facultad de Ciencias Exactas
Centro de Investigación y Desarrollo en Criotecnología de Alimentos
Materia
Biología
Human umbilical artery
Patch clamp
Ca2+ channels
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83236

id SEDICI_00ee7f41ad7dc515f89c66970ae2c1ae
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83236
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical arterySalemme, Silvia VerónicaRebolledo, AlejandroSperoni Aguirre, FranciscoPetruccelli, SilvanaMilesi, María VerónicaBiologíaHuman umbilical arteryPatch clampCa2+ channelsThe electrophysiological and pharmacological properties of Ca 2+ current (I Ca ) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca 2+ , depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I Ca which activated at membrane potentials more positive than -50 mV and exhibited a maximum current density in a range of 10-20 mV. Steady-state inactivation protocols using a V test of 10 mV gave a voltage at one-half inactivation and a slope factor of -35.6 mV and 9.5 mV, respectively. Nifedipine (1 μM), an L-type Ca 2+ channels antagonist, completely inhibited I Ca , while the L-type Ca 2+ channels agonist Bay-K 8644 (1 μM) significantly increased I Ca amplitude. Moreover, the selective blocker of P-/Q-type Ca 2+ channels ω-agatoxin IVA partially blocked I Ca (about 40 % inhibition at +20 mV by 20 nM). These pharmacological results suggest that L- and P-/Q-type Ca 2+ channels, both nifedipine-sensitive, underlie the I Ca registered using low extracellular Ca 2+ . The presence of the P-/Q-type Ca 2+ channels was confirmed by immunoblot analysis. When I Ca was recorded in a high concentration (30 mM) of extracellular Ca 2+ or Ba 2+ as current carrier, it was evident the presence of a nifedipine-insensitive component which completely inactivated during the course of the voltage-step (75 ms) at all potentials tested, and was blocked by the T-type Ca 2+ channels blocker mibefradil (10 μM). Summarizing, this work shows for the first time the electrophysiological and pharmacological properties of voltage-activated Ca 2+ currents in human umbilical artery smooth muscle cells.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Criotecnología de Alimentos2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf55-64http://sedici.unlp.edu.ar/handle/10915/83236enginfo:eu-repo/semantics/altIdentifier/issn/1015-8987info:eu-repo/semantics/altIdentifier/doi/10.1159/000104153info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:18:23Zoai:sedici.unlp.edu.ar:10915/83236Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:18:23.875SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
title L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
spellingShingle L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
Salemme, Silvia Verónica
Biología
Human umbilical artery
Patch clamp
Ca2+ channels
title_short L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
title_full L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
title_fullStr L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
title_full_unstemmed L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
title_sort L, P-/Q- and T-type Ca channels in smooth muscle cells from human umbilical artery
dc.creator.none.fl_str_mv Salemme, Silvia Verónica
Rebolledo, Alejandro
Speroni Aguirre, Francisco
Petruccelli, Silvana
Milesi, María Verónica
author Salemme, Silvia Verónica
author_facet Salemme, Silvia Verónica
Rebolledo, Alejandro
Speroni Aguirre, Francisco
Petruccelli, Silvana
Milesi, María Verónica
author_role author
author2 Rebolledo, Alejandro
Speroni Aguirre, Francisco
Petruccelli, Silvana
Milesi, María Verónica
author2_role author
author
author
author
dc.subject.none.fl_str_mv Biología
Human umbilical artery
Patch clamp
Ca2+ channels
topic Biología
Human umbilical artery
Patch clamp
Ca2+ channels
dc.description.none.fl_txt_mv The electrophysiological and pharmacological properties of Ca 2+ current (I Ca ) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca 2+ , depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I Ca which activated at membrane potentials more positive than -50 mV and exhibited a maximum current density in a range of 10-20 mV. Steady-state inactivation protocols using a V test of 10 mV gave a voltage at one-half inactivation and a slope factor of -35.6 mV and 9.5 mV, respectively. Nifedipine (1 μM), an L-type Ca 2+ channels antagonist, completely inhibited I Ca , while the L-type Ca 2+ channels agonist Bay-K 8644 (1 μM) significantly increased I Ca amplitude. Moreover, the selective blocker of P-/Q-type Ca 2+ channels ω-agatoxin IVA partially blocked I Ca (about 40 % inhibition at +20 mV by 20 nM). These pharmacological results suggest that L- and P-/Q-type Ca 2+ channels, both nifedipine-sensitive, underlie the I Ca registered using low extracellular Ca 2+ . The presence of the P-/Q-type Ca 2+ channels was confirmed by immunoblot analysis. When I Ca was recorded in a high concentration (30 mM) of extracellular Ca 2+ or Ba 2+ as current carrier, it was evident the presence of a nifedipine-insensitive component which completely inactivated during the course of the voltage-step (75 ms) at all potentials tested, and was blocked by the T-type Ca 2+ channels blocker mibefradil (10 μM). Summarizing, this work shows for the first time the electrophysiological and pharmacological properties of voltage-activated Ca 2+ currents in human umbilical artery smooth muscle cells.
Facultad de Ciencias Exactas
Centro de Investigación y Desarrollo en Criotecnología de Alimentos
description The electrophysiological and pharmacological properties of Ca 2+ current (I Ca ) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca 2+ , depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I Ca which activated at membrane potentials more positive than -50 mV and exhibited a maximum current density in a range of 10-20 mV. Steady-state inactivation protocols using a V test of 10 mV gave a voltage at one-half inactivation and a slope factor of -35.6 mV and 9.5 mV, respectively. Nifedipine (1 μM), an L-type Ca 2+ channels antagonist, completely inhibited I Ca , while the L-type Ca 2+ channels agonist Bay-K 8644 (1 μM) significantly increased I Ca amplitude. Moreover, the selective blocker of P-/Q-type Ca 2+ channels ω-agatoxin IVA partially blocked I Ca (about 40 % inhibition at +20 mV by 20 nM). These pharmacological results suggest that L- and P-/Q-type Ca 2+ channels, both nifedipine-sensitive, underlie the I Ca registered using low extracellular Ca 2+ . The presence of the P-/Q-type Ca 2+ channels was confirmed by immunoblot analysis. When I Ca was recorded in a high concentration (30 mM) of extracellular Ca 2+ or Ba 2+ as current carrier, it was evident the presence of a nifedipine-insensitive component which completely inactivated during the course of the voltage-step (75 ms) at all potentials tested, and was blocked by the T-type Ca 2+ channels blocker mibefradil (10 μM). Summarizing, this work shows for the first time the electrophysiological and pharmacological properties of voltage-activated Ca 2+ currents in human umbilical artery smooth muscle cells.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83236
url http://sedici.unlp.edu.ar/handle/10915/83236
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1015-8987
info:eu-repo/semantics/altIdentifier/doi/10.1159/000104153
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
55-64
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904163531358208
score 12.993085