An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem

Autores
Croceri, Graciela; Pizarro, Gonzalo; Sottosanto, Graciela
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work an iterative method to solve the nonlinear least squares problem is presented. The algorithm combines a secant method with a strategy of nonmonotone trust region. In order to dene the quadratic model, the Hessian matrix is chosen using a secant approach that takes advantage of the structure of the problem, and the radius of the trust region is updated following an adaptive technique. Moreover, convergence properties of this algorithm are proved. The numerical experimentation, in which several ways of choosing the Hessian matrix are compared, shows the effiency and robustness of the method.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Trust region
Least Squares Problem
Structured Secant Approximation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/135159

id SEDICI_00180a1eca3d265febe5d033574df35d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/135159
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares ProblemCroceri, GracielaPizarro, GonzaloSottosanto, GracielaCiencias InformáticasTrust regionLeast Squares ProblemStructured Secant ApproximationIn this work an iterative method to solve the nonlinear least squares problem is presented. The algorithm combines a secant method with a strategy of nonmonotone trust region. In order to dene the quadratic model, the Hessian matrix is chosen using a secant approach that takes advantage of the structure of the problem, and the radius of the trust region is updated following an adaptive technique. Moreover, convergence properties of this algorithm are proved. The numerical experimentation, in which several ways of choosing the Hessian matrix are compared, shows the effiency and robustness of the method.Sociedad Argentina de Informática e Investigación Operativa2017-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf80-94http://sedici.unlp.edu.ar/handle/10915/135159enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/24info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:34:01Zoai:sedici.unlp.edu.ar:10915/135159Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:34:01.58SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
title An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
spellingShingle An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
Croceri, Graciela
Ciencias Informáticas
Trust region
Least Squares Problem
Structured Secant Approximation
title_short An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
title_full An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
title_fullStr An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
title_full_unstemmed An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
title_sort An Adaptive Nonmonotone Trust Region Method Based on a Structured Quasi Newton Equation for the Nonlinear Least Squares Problem
dc.creator.none.fl_str_mv Croceri, Graciela
Pizarro, Gonzalo
Sottosanto, Graciela
author Croceri, Graciela
author_facet Croceri, Graciela
Pizarro, Gonzalo
Sottosanto, Graciela
author_role author
author2 Pizarro, Gonzalo
Sottosanto, Graciela
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Trust region
Least Squares Problem
Structured Secant Approximation
topic Ciencias Informáticas
Trust region
Least Squares Problem
Structured Secant Approximation
dc.description.none.fl_txt_mv In this work an iterative method to solve the nonlinear least squares problem is presented. The algorithm combines a secant method with a strategy of nonmonotone trust region. In order to dene the quadratic model, the Hessian matrix is chosen using a secant approach that takes advantage of the structure of the problem, and the radius of the trust region is updated following an adaptive technique. Moreover, convergence properties of this algorithm are proved. The numerical experimentation, in which several ways of choosing the Hessian matrix are compared, shows the effiency and robustness of the method.
Sociedad Argentina de Informática e Investigación Operativa
description In this work an iterative method to solve the nonlinear least squares problem is presented. The algorithm combines a secant method with a strategy of nonmonotone trust region. In order to dene the quadratic model, the Hessian matrix is chosen using a secant approach that takes advantage of the structure of the problem, and the radius of the trust region is updated following an adaptive technique. Moreover, convergence properties of this algorithm are proved. The numerical experimentation, in which several ways of choosing the Hessian matrix are compared, shows the effiency and robustness of the method.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/135159
url http://sedici.unlp.edu.ar/handle/10915/135159
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/24
info:eu-repo/semantics/altIdentifier/issn/1514-6774
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
80-94
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616220108652544
score 13.070432